-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
110 lines (81 loc) · 3.08 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from cv2 import VideoCapture, imshow
import cv2 # Install opencv-python
import numpy as np
from keras.models import load_model
import zmq # TensorFlow is required for Keras to work
def load_model_from_file():
path_to_model = './resources/fire_model/keras_model.h5'
path_to_labels = './resources/fire_model/labels.txt'
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = load_model(path_to_model, compile=False)
# Load the labels
class_names = open(path_to_labels, "r").readlines()
return model, class_names
def predict(model,class_names,image):
# Resize the raw image into (224-height,224-width) pixels
image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
# Make the image a numpy array and reshape it to the models input shape.
image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
# Normalize the image array
image = (image / 127.5) - 1
# Predicts the model
prediction = model.predict(image)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
# Print prediction and confidence score
print("Class:", class_name[2:], end="")
print("Confidence Score:", str(np.round(confidence_score * 100))[:-2], "%")
return class_name[2:], str(np.round(confidence_score * 100))[:-2]
def set_fan_speed(socket,speed:int):
socket.send(speed)
print(f'set_fan_speed {speed}')
def create_zmq_reciver():
context = zmq.Context()
socket = context.socket(zmq.PAIR)
socket.bind("tcp://192.168.178.21:6666")
print('bind')
return socket
def create_fan_sender():
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.connect("tcp://192.168.178.21:5555")
return socket
def recive_image(socket):
# Grab the webcamera's image.
#ret, image = camera.read()
image = socket.recv()
return image
def main():
model, class_names = load_model_from_file()
socket = create_zmq_reciver()
fan_socket = create_fan_sender()
print('Model loaded')
# CAMERA can be 0 or 1 based on default camera of your computer
#camera = cv2.VideoCapture(0)
print('Cam conencted')
while True:
image = recive_image(socket)
print('image recived')
imshow('Test', image)
cv2.waitKey(1)
class_name, confidence_score = predict(model=model,class_names=class_names, image=image)
if class_name > 'no_smoke':
set_fan_speed(fan_socket,0)
elif class_name > 'middel_smoke':
set_fan_speed(fan_socket,50)
elif class_name > 'full_smoke':
set_fan_speed(fan_socket,100)
else:
set_fan_speed(fan_socket,100)
# Listen to the keyboard for presses.
keyboard_input = cv2.waitKey(1)
# 27 is the ASCII for the esc key on your keyboard.
if keyboard_input == 27:
break
#camera.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()