-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathl0k_pair.cairo
818 lines (661 loc) · 24.1 KB
/
l0k_pair.cairo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
%lang starknet
from starkware.cairo.common.cairo_builtins import HashBuiltin, BitwiseBuiltin
from starkware.cairo.common.uint256 import (
Uint256,
uint256_check,
uint256_sqrt,
uint256_le,
uint256_lt,
uint256_eq,
)
from starkware.cairo.common.bool import TRUE, FALSE
from starkware.cairo.common.math_cmp import is_le_felt
from starkware.cairo.common.math import assert_nn, assert_not_equal, assert_not_zero
from starkware.starknet.common.syscalls import (
get_caller_address,
get_contract_address,
get_block_timestamp,
)
from openzeppelin.security.reentrancyguard.library import ReentrancyGuard
from openzeppelin.security.safemath.library import SafeUint256
from openzeppelin.token.erc20.library import ERC20, ERC20_total_supply, ERC20_balances, Transfer
from openzeppelin.token.erc20.IERC20 import IERC20
from warplib.maths.div import warp_div256
from warplib.maths.mod import warp_mod
from warplib.maths.gt import warp_gt
from warplib.maths.neq import warp_neq
from warplib.maths.add import warp_add256
from warplib.maths.int_conversions import warp_int256_to_int112, warp_int128_to_int32, warp_uint256
from libraries.l0k_library import min_uint256
from libraries.uq112x112 import Q112, encode, uqdiv
from interfaces.Il0kFactory import Il0kFactory
#
# ERC20 === start ===
#
@view
func name{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (name : felt):
let (name) = ERC20.name()
return (name)
end
@view
func symbol{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (symbol : felt):
let (symbol) = ERC20.symbol()
return (symbol)
end
@view
func totalSupply{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
totalSupply : Uint256
):
let (totalSupply) = ERC20.total_supply()
return (totalSupply)
end
@view
func decimals{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
decimals : felt
):
let (decimals) = ERC20.decimals()
return (decimals)
end
@view
func balanceOf{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
account : felt
) -> (balance : Uint256):
let (balance) = ERC20.balance_of(account)
return (balance)
end
@view
func allowance{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
owner : felt, spender : felt
) -> (remaining : Uint256):
let (remaining) = ERC20.allowance(owner, spender)
return (remaining)
end
@external
func transfer{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
recipient : felt, amount : Uint256
) -> (success : felt):
ERC20.transfer(recipient, amount)
return (TRUE)
end
@external
func transferFrom{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
sender : felt, recipient : felt, amount : Uint256
) -> (success : felt):
ERC20.transfer_from(sender, recipient, amount)
return (TRUE)
end
@external
func approve{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
spender : felt, amount : Uint256
) -> (success : felt):
ERC20.approve(spender, amount)
return (TRUE)
end
@external
func increaseAllowance{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
spender : felt, added_value : Uint256
) -> (success : felt):
ERC20.increase_allowance(spender, added_value)
return (TRUE)
end
@external
func decreaseAllowance{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
spender : felt, subtracted_value : Uint256
) -> (success : felt):
ERC20.decrease_allowance(spender, subtracted_value)
return (TRUE)
end
#
# ERC20 === end ===
#
#
# Pair === start ===
#
#
# Constants
#
# Cairo supports defining constant expressions (only integers(felt))
# https://www.cairo-lang.org/docs/how_cairo_works/consts.html
const _MINIMUM_LIQUIDITY = 10 ** 3
#
# Events
#
@event
func Mint(sender : felt, amount0 : Uint256, amount1 : Uint256):
end
@event
func Burn(sender : felt, amount0 : Uint256, amount1 : Uint256, to : felt):
end
@event
func Swap(
sender : felt,
amount0In : Uint256,
amount1In : Uint256,
amount0Out : Uint256,
amount1Out : Uint256,
to : felt,
):
end
@event
func Sync(reserve0 : felt, reserve1 : felt):
end
#
# Storage
#
@storage_var
func _factory() -> (factory : felt):
end
@storage_var
func _token0() -> (token0 : felt):
end
@storage_var
func _token1() -> (token1 : felt):
end
# Type: uint112
@storage_var
func _reserve0() -> (reserve0 : felt):
end
@storage_var
func _reserve1() -> (reserve1 : felt):
end
@storage_var
func _blockTimestampLast() -> (blockTimestampLast : felt):
end
@storage_var
func _price0CumulativeLast() -> (price0CumulativeLast : Uint256):
end
@storage_var
func _price1CumulativeLast() -> (price1CumulativeLast : Uint256):
end
# reserve0 * reserve1, as of immediately after the most recent liquidity event
@storage_var
func _kLast() -> (kLast : Uint256):
end
#
# Constructor
#
@constructor
func constructor{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}():
let (sender) = get_caller_address()
_factory.write(sender)
return ()
end
#
# Getters
#
@view
func MINIMUM_LIQUIDITY{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
MINIMUM_LIQUIDITY : felt
):
return (MINIMUM_LIQUIDITY=_MINIMUM_LIQUIDITY)
end
@view
func factory{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
factory : felt
):
let (value) = _factory.read()
return (factory=value)
end
@view
func token0{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (token0 : felt):
let (value) = _token0.read()
return (token0=value)
end
@view
func token1{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (token1 : felt):
let (value) = _token1.read()
return (token1=value)
end
@view
func blockTimestampLast{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
blockTimestampLast : felt
):
let (value) = _blockTimestampLast.read()
return (blockTimestampLast=value)
end
@view
func price0CumulativeLast{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
price0CumulativeLast : Uint256
):
let (value) = _price0CumulativeLast.read()
return (price0CumulativeLast=value)
end
@view
func price1CumulativeLast{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
price1CumulativeLast : Uint256
):
let (value) = _price1CumulativeLast.read()
return (price1CumulativeLast=value)
end
@view
func kLast{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
kLast : Uint256
):
let (value) = _kLast.read()
return (kLast=value)
end
@view
func getReserves{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}() -> (
reserve0 : felt, reserve1 : felt, blockTimestampLast : felt
):
let (reserve0) = _reserve0.read()
let (reserve1) = _reserve1.read()
let (blockTimestampLast) = _blockTimestampLast.read()
return (reserve0=reserve0, reserve1=reserve1, blockTimestampLast=blockTimestampLast)
end
#
# Externals
#
# called once by the factory at time of deployment
@external
func initialize{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
token0 : felt, token1 : felt
) -> ():
let (factory) = _factory.read()
let (sender) = get_caller_address()
with_attr error_message("10kSwap: FB"):
assert factory = sender
end
_token0.write(token0)
_token1.write(token1)
ERC20.initializer('10kSwap Pair Token', 'LPT', 18)
return ()
end
# this low-level function should be called from a contract which performs important safety checks
@external
func mint{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(to : felt) -> (liquidity : Uint256):
alloc_locals
ReentrancyGuard._start()
let (reserve0, reserve1, _) = getReserves()
let (token0) = _token0.read()
let (token1) = _token1.read()
let (self) = get_contract_address()
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
let (amount0) = SafeUint256.sub_le(balance0, Uint256(reserve0, 0))
let (amount1) = SafeUint256.sub_le(balance1, Uint256(reserve1, 0))
let (feeOn) = _mintFee(reserve0, reserve1)
let (totalSupply : Uint256) = ERC20.total_supply()
let (zero_total_supply) = uint256_eq(totalSupply, Uint256(0, 0))
if zero_total_supply == TRUE:
let (m0 : Uint256) = SafeUint256.mul(amount0, amount1)
let (sq : Uint256) = uint256_sqrt(m0)
let (_liquidity : Uint256) = SafeUint256.sub_le(sq, Uint256(_MINIMUM_LIQUIDITY, 0))
# permanently lock the first _MINIMUM_LIQUIDITY tokens
_mint(0, Uint256(_MINIMUM_LIQUIDITY, 0))
_mint_part1(feeOn, to, amount0, amount1, _liquidity, balance0, balance1, reserve0, reserve1)
ReentrancyGuard._end()
return (_liquidity)
else:
# a = amount0 * totalSupply / reserve0
# b = amount1 * totalSupply / reserve1
# liquidity = min(a, b)
let (a_lhs : Uint256) = SafeUint256.mul(amount0, totalSupply)
let (a : Uint256) = warp_div256(a_lhs, Uint256(reserve0, 0))
let (b_lhs : Uint256) = SafeUint256.mul(amount1, totalSupply)
let (b : Uint256) = warp_div256(b_lhs, Uint256(reserve1, 0))
let (_liquidity : Uint256) = min_uint256(a, b)
_mint_part1(feeOn, to, amount0, amount1, _liquidity, balance0, balance1, reserve0, reserve1)
ReentrancyGuard._end()
return (_liquidity)
end
end
# this low-level function should be called from a contract which performs important safety checks
@external
func burn{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(to : felt) -> (amount0 : Uint256, amount1 : Uint256):
alloc_locals
ReentrancyGuard._start()
let (reserve0, reserve1, _) = getReserves()
let (token0) = _token0.read()
let (token1) = _token1.read()
let (self) = get_contract_address()
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
let (liquidity : Uint256) = ERC20.balance_of(account=self)
let (feeOn) = _mintFee(reserve0, reserve1)
let (totalSupply : Uint256) = ERC20.total_supply()
# using balances ensures pro-rata distribution
let (a0) = SafeUint256.mul(liquidity, balance0)
let (amount0) = warp_div256(a0, totalSupply)
let (a1) = SafeUint256.mul(liquidity, balance1)
let (amount1) = warp_div256(a1, totalSupply)
# Insufficient liquidity burned
with_attr error_message("10kSwap: ILB"):
let (r0) = uint256_le(amount0, Uint256(0, 0))
let (r1) = uint256_le(amount1, Uint256(0, 0))
assert r0 = FALSE
assert r1 = FALSE
end
_burn(self, liquidity)
IERC20.transfer(contract_address=token0, recipient=to, amount=amount0)
IERC20.transfer(contract_address=token1, recipient=to, amount=amount1)
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
_update(balance0, balance1, reserve0, reserve1)
_kLast_update(feeOn)
let (sender) = get_caller_address()
Burn.emit(sender, amount0, amount1, to)
ReentrancyGuard._end()
return (amount0=amount0, amount1=amount1)
end
# this low-level function should be called from a contract which performs important safety checks
@external
func swap{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(amount0Out : Uint256, amount1Out : Uint256, to : felt) -> ():
alloc_locals
ReentrancyGuard._start()
# Insufficient output amount
with_attr error_message("10kSwap: IOA"):
# Require amount0Out > 0 || amount1Out > 0
let (r0) = uint256_le(amount0Out, Uint256(0, 0))
let (r1) = uint256_le(amount1Out, Uint256(0, 0))
assert r0 * r1 = FALSE
end
let (reserve0, reserve1, _) = getReserves()
# Insufficient liquidity
with_attr error_message("10kSwap: IL"):
let (r0) = uint256_lt(amount0Out, Uint256(reserve0, 0))
let (r1) = uint256_lt(amount1Out, Uint256(reserve1, 0))
assert r0 * r1 = TRUE
end
let (token0) = _token0.read()
let (token1) = _token1.read()
# Invalid to
with_attr error_message("10kSwap: IT"):
if to == token0:
assert 1 = 0
end
if to == token1:
assert 1 = 0
end
end
# TODO. Not implemented safeTransfer
_swap_Transfer(token0, to, amount0Out)
_swap_Transfer(token1, to, amount1Out)
let (self) = get_contract_address()
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
# Amount in
let (amount0In : Uint256) = _swap_get_amountIn(balance0, reserve0, amount0Out)
let (amount1In : Uint256) = _swap_get_amountIn(balance1, reserve1, amount1Out)
# Insufficient input amount
with_attr error_message("10kSwap: IIA"):
# Require amount0In > 0 || amount1In > 0
let (r0) = uint256_le(amount0In, Uint256(0, 0))
let (r1) = uint256_le(amount1In, Uint256(0, 0))
assert r0 * r1 = FALSE
end
with_attr error_message("10kSwap: K"):
let (b0 : Uint256) = SafeUint256.mul(balance0, Uint256(1000, 0))
let (a0 : Uint256) = SafeUint256.mul(amount0In, Uint256(3, 0))
let (balance0Adjusted : Uint256) = SafeUint256.sub_le(b0, a0)
let (b1 : Uint256) = SafeUint256.mul(balance1, Uint256(1000, 0))
let (a1 : Uint256) = SafeUint256.mul(amount1In, Uint256(3, 0))
let (balance1Adjusted : Uint256) = SafeUint256.sub_le(b1, a1)
let (m0) = SafeUint256.mul(balance0Adjusted, balance1Adjusted)
let (m1_0) = SafeUint256.mul(Uint256(reserve0, 0), Uint256(reserve1, 0))
let (m1) = SafeUint256.mul(m1_0, Uint256(1000 ** 2, 0))
let (is_lt) = uint256_lt(m0, m1)
assert is_lt = FALSE
end
_update(balance0, balance1, reserve0, reserve1)
let (sender) = get_caller_address()
Swap.emit(sender, amount0In, amount1In, amount0Out, amount1Out, to)
ReentrancyGuard._end()
return ()
end
# force balances to match reserves
@external
func skim{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(to : felt) -> ():
alloc_locals
ReentrancyGuard._start()
let (token0) = _token0.read()
let (token1) = _token1.read()
let (self) = get_contract_address()
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
let (reserve0) = _reserve0.read()
let (reserve1) = _reserve1.read()
# Todo: To be implemented safeTransfer
let (diff0) = SafeUint256.sub_le(balance0, Uint256(reserve0, 0))
let (diff1) = SafeUint256.sub_le(balance1, Uint256(reserve1, 0))
IERC20.transfer(contract_address=token0, recipient=to, amount=diff0)
IERC20.transfer(contract_address=token1, recipient=to, amount=diff1)
ReentrancyGuard._end()
return ()
end
# force reserves to match balances
@external
func sync{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}() -> ():
alloc_locals
ReentrancyGuard._start()
let (token0) = _token0.read()
let (token1) = _token1.read()
let (self) = get_contract_address()
let (balance0 : Uint256) = IERC20.balanceOf(contract_address=token0, account=self)
let (balance1 : Uint256) = IERC20.balanceOf(contract_address=token1, account=self)
let (reserve0) = _reserve0.read()
let (reserve1) = _reserve1.read()
_update(balance0, balance1, reserve0, reserve1)
ReentrancyGuard._end()
return ()
end
#
# Internal
#
func _mint_part1{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(
feeOn : felt,
to : felt,
amount0 : Uint256,
amount1 : Uint256,
liquidity : Uint256,
balance0 : Uint256,
balance1 : Uint256,
reserve0 : felt,
reserve1 : felt,
):
# Insufficient liquidity minted
with_attr error_message("10kSwap: ILM"):
let (is_le) = uint256_le(liquidity, Uint256(0, 0))
assert is_le = FALSE
end
_mint(to, liquidity)
_update(balance0, balance1, reserve0, reserve1)
_kLast_update(feeOn)
let (sender) = get_caller_address()
Mint.emit(sender, amount0, amount1)
return ()
end
func _update{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(balance0 : Uint256, balance1 : Uint256, reserve0 : felt, reserve1 : felt):
alloc_locals
# Overflow
with_attr error_message("10kSwap: OV"):
let (is_le_0) = uint256_le(balance0, Uint256(Q112 - 1, 0))
let (is_le_1) = uint256_le(balance1, Uint256(Q112 - 1, 0))
assert (is_le_0, is_le_1) = (TRUE, TRUE)
end
let (blockTimestampLast) = _blockTimestampLast.read()
let (price0CumulativeLast : Uint256) = _price0CumulativeLast.read()
let (price1CumulativeLast : Uint256) = _price1CumulativeLast.read()
let (block_timestamp) = get_block_timestamp()
let (bt_r) = warp_mod(block_timestamp, 2 ** 32)
let (block_timestamp) = warp_int128_to_int32(bt_r)
# overflow is desired
let timeElapsed = block_timestamp - blockTimestampLast
let (if0) = warp_gt(timeElapsed, 0)
let (if1) = warp_neq(reserve0, 0)
let (if2) = warp_neq(reserve1, 0)
if if0 * if1 * if2 == TRUE:
let (e0) = encode(reserve0)
let (e1) = encode(reserve1)
let (u0) = uqdiv(e1, reserve0)
let (u1) = uqdiv(e0, reserve1)
# uint224 to uint256
let (u0_256) = warp_uint256(u0)
let (u1_256) = warp_uint256(u1)
# * never overflows, and + overflow is desired
# _price0CumulativeLast = _price0CumulativeLast + u0 * timeElapsed
let (p0 : Uint256) = SafeUint256.mul(u0_256, Uint256(timeElapsed, 0))
let (p1 : Uint256) = SafeUint256.mul(u1_256, Uint256(timeElapsed, 0))
let (p0CumulativeLast : Uint256) = warp_add256(p0, price0CumulativeLast)
let (p1CumulativeLast : Uint256) = warp_add256(p1, price1CumulativeLast)
_price0CumulativeLast.write(p0CumulativeLast)
_price1CumulativeLast.write(p1CumulativeLast)
# if condition will revoked implicit arguments
# https://www.cairo-lang.org/docs/how_cairo_works/builtins.html?highlight=revoke%20reference#revoked-implicit-arguments
tempvar syscall_ptr = syscall_ptr
tempvar pedersen_ptr = pedersen_ptr
tempvar range_check_ptr = range_check_ptr
tempvar bitwise_ptr = bitwise_ptr
else:
tempvar syscall_ptr = syscall_ptr
tempvar pedersen_ptr = pedersen_ptr
tempvar range_check_ptr = range_check_ptr
tempvar bitwise_ptr = bitwise_ptr
end
# Stroage
let (r0) = warp_int256_to_int112(balance0)
_reserve0.write(r0)
let (r1) = warp_int256_to_int112(balance1)
_reserve1.write(r1)
_blockTimestampLast.write(block_timestamp)
Sync.emit(r0, r1)
return ()
end
# if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
func _mintFee{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
reserve0 : felt, reserve1 : felt
) -> (feeOn : felt):
alloc_locals
let (factory) = _factory.read()
let (kLast : Uint256) = _kLast.read()
let (feeTo) = Il0kFactory.feeTo(contract_address=factory)
let (notFeeOn) = is_le_felt(feeTo, 0)
let feeOn = 1 - notFeeOn
let (zeroKLast) = uint256_eq(kLast, Uint256(0, 0))
if feeOn == TRUE:
if zeroKLast == FALSE:
let (m0 : Uint256) = SafeUint256.mul(Uint256(reserve0, 0), Uint256(reserve1, 0))
let (rootK : Uint256) = uint256_sqrt(m0)
let (rootKLast : Uint256) = uint256_sqrt(kLast)
let (is_le) = uint256_le(rootK, rootKLast)
if is_le == FALSE:
let (totalSupply : Uint256) = ERC20.total_supply()
let (s1 : Uint256) = SafeUint256.sub_le(rootK, rootKLast)
let (numerator : Uint256) = SafeUint256.mul(totalSupply, s1)
let (m1 : Uint256) = SafeUint256.mul(rootK, Uint256(5, 0))
let (denominator : Uint256) = SafeUint256.add(m1, rootKLast)
let (liquidity : Uint256) = warp_div256(numerator, denominator)
let (liquidity_le_zero) = uint256_le(liquidity, Uint256(0, 0))
if liquidity_le_zero == FALSE:
_mint(feeTo, liquidity)
return (feeOn)
end
return (feeOn)
end
return (feeOn)
end
return (feeOn)
else:
if zeroKLast == FALSE:
_kLast.write(Uint256(0, 0))
return (feeOn)
end
return (feeOn)
end
end
func _mint{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
recipient : felt, amount : Uint256
):
with_attr error_message("ERC20: amount is not a valid Uint256"):
uint256_check(amount)
end
# Remove zero address check
# with_attr error_message("ERC20: cannot mint to the zero address"):
# assert_not_zero(recipient)
# end
let (supply : Uint256) = ERC20_total_supply.read()
with_attr error_message("ERC20: mint overflow"):
let (new_supply : Uint256) = SafeUint256.add(supply, amount)
end
ERC20_total_supply.write(new_supply)
let (balance : Uint256) = ERC20_balances.read(account=recipient)
# overflow is not possible because sum is guaranteed to be less than total supply
# which we check for overflow below
let (new_balance : Uint256) = SafeUint256.add(balance, amount)
ERC20_balances.write(recipient, new_balance)
Transfer.emit(0, recipient, amount)
return ()
end
func _burn{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
account : felt, amount : Uint256
):
with_attr error_message("ERC20: amount is not a valid Uint256"):
uint256_check(amount)
end
# Remove zero address check
# with_attr error_message("ERC20: cannot burn from the zero address"):
# assert_not_zero(account)
# end
let (balance : Uint256) = ERC20_balances.read(account)
with_attr error_message("ERC20: burn amount exceeds balance"):
let (new_balance : Uint256) = SafeUint256.sub_le(balance, amount)
end
ERC20_balances.write(account, new_balance)
let (supply : Uint256) = ERC20_total_supply.read()
let (new_supply : Uint256) = SafeUint256.sub_le(supply, amount)
ERC20_total_supply.write(new_supply)
Transfer.emit(account, 0, amount)
return ()
end
func _kLast_update{
syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr, bitwise_ptr : BitwiseBuiltin*
}(feeOn : felt) -> ():
if feeOn == TRUE:
# _reserve0 and _reserve1 are up-to-date
let (reserve0) = _reserve0.read()
let (reserve1) = _reserve1.read()
let (r0xr1) = SafeUint256.mul(Uint256(reserve0, 0), Uint256(reserve1, 0))
_kLast.write(r0xr1)
return ()
else:
return ()
end
end
func _swap_Transfer{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
token : felt, recipient : felt, amountOut : Uint256
) -> ():
let (is_le) = uint256_le(amountOut, Uint256(0, 0))
if is_le == TRUE:
return ()
end
IERC20.transfer(contract_address=token, recipient=recipient, amount=amountOut)
return ()
end
func _swap_get_amountIn{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
balance : Uint256, reserve : felt, amountOut : Uint256
) -> (amountIn : Uint256):
alloc_locals
# amountIn = balance <= reserve - amountOut ? 0 : balance - (reserve - amountOut)
let (a) = SafeUint256.sub_le(Uint256(reserve, 0), amountOut)
let (is_le) = uint256_le(balance, a)
if is_le == FALSE:
let (_amountIn) = SafeUint256.sub_le(balance, a)
return (amountIn=_amountIn)
end
return (amountIn=Uint256(0, 0))
end
#
# Pair === end ===
#