forked from stefan-jansen/machine-learning-for-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrading_env.py
267 lines (223 loc) · 10.2 KB
/
trading_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
The MIT License (MIT)
Copyright (c) 2016 Tito Ingargiola
Copyright (c) 2019 Stefan Jansen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import logging
import tempfile
import gym
import numpy as np
import pandas as pd
from gym import spaces
from gym.utils import seeding
from sklearn.preprocessing import scale
import talib
logging.basicConfig()
log = logging.getLogger(__name__)
log.setLevel(logging.INFO)
log.info('%s logger started.', __name__)
class DataSource:
"""
Data source for TradingEnvironment
Loads & preprocesses daily price & volume data
Provides data for each new episode.
Stocks with longest history:
ticker # obs
KO 14155
GE 14155
BA 14155
CAT 14155
DIS 14155
"""
def __init__(self, trading_days=252, ticker='AAPL', normalize=True):
self.ticker = ticker
self.trading_days = trading_days
self.normalize = normalize
self.data = self.load_data()
self.preprocess_data()
self.min_values = self.data.min()
self.max_values = self.data.max()
self.step = 0
self.offset = None
def load_data(self):
log.info('loading data for {}...'.format(self.ticker))
idx = pd.IndexSlice
with pd.HDFStore('../data/assets.h5') as store:
df = (store['quandl/wiki/prices']
.loc[idx[:, self.ticker],
['adj_close', 'adj_volume', 'adj_low', 'adj_high']]
.dropna()
.sort_index())
df.columns = ['close', 'volume', 'low', 'high']
log.info('got data for {}...'.format(self.ticker))
return df
def preprocess_data(self):
"""calculate returns and percentiles, then removes missing values"""
self.data['returns'] = self.data.close.pct_change()
self.data['ret_2'] = self.data.close.pct_change(2)
self.data['ret_5'] = self.data.close.pct_change(5)
self.data['ret_10'] = self.data.close.pct_change(10)
self.data['ret_21'] = self.data.close.pct_change(21)
self.data['rsi'] = talib.STOCHRSI(self.data.close)[1]
self.data['macd'] = talib.MACD(self.data.close)[1]
self.data['atr'] = talib.ATR(self.data.high, self.data.low, self.data.close)
slowk, slowd = talib.STOCH(self.data.high, self.data.low, self.data.close)
self.data['stoch'] = slowd - slowk
self.data['atr'] = talib.ATR(self.data.high, self.data.low, self.data.close)
self.data['ultosc'] = talib.ULTOSC(self.data.high, self.data.low, self.data.close)
self.data = (self.data.replace((np.inf, -np.inf), np.nan)
.drop(['high', 'low', 'close', 'volume'], axis=1)
.dropna())
r = self.data.returns.copy()
if self.normalize:
self.data = pd.DataFrame(scale(self.data),
columns=self.data.columns,
index=self.data.index)
features = self.data.columns.drop('returns')
self.data['returns'] = r # don't scale returns
self.data = self.data.loc[:, ['returns'] + list(features)]
log.info(self.data.info())
def reset(self):
"""Provides starting index for time series and resets step"""
high = len(self.data.index) - self.trading_days
self.offset = np.random.randint(low=0, high=high)
self.step = 0
def take_step(self):
"""Returns data for current trading day and done signal"""
obs = self.data.iloc[self.offset + self.step].values
self.step += 1
done = self.step > self.trading_days
return obs, done
class TradingSimulator:
""" Implements core trading simulator for single-instrument univ """
def __init__(self, steps, trading_cost_bps, time_cost_bps):
# invariant for object life
self.trading_cost_bps = trading_cost_bps
self.time_cost_bps = time_cost_bps
self.steps = steps
# change every step
self.step = 0
self.actions = np.zeros(self.steps)
self.navs = np.ones(self.steps)
self.market_navs = np.ones(self.steps)
self.strategy_returns = np.ones(self.steps)
self.positions = np.zeros(self.steps)
self.costs = np.zeros(self.steps)
self.trades = np.zeros(self.steps)
self.market_returns = np.zeros(self.steps)
def reset(self):
self.step = 0
self.actions.fill(0)
self.navs.fill(1)
self.market_navs.fill(1)
self.strategy_returns.fill(0)
self.positions.fill(0)
self.costs.fill(0)
self.trades.fill(0)
self.market_returns.fill(0)
def take_step(self, action, market_return):
""" Calculates NAVs, trading costs and reward
based on an action and latest market return
and returns the reward and a summary of the day's activity. """
start_position = self.positions[max(0, self.step - 1)]
start_nav = self.navs[max(0, self.step - 1)]
start_market_nav = self.market_navs[max(0, self.step - 1)]
self.market_returns[self.step] = market_return
self.actions[self.step] = action
end_position = action - 1 # short, neutral, long
n_trades = end_position - start_position
self.positions[self.step] = end_position
self.trades[self.step] = n_trades
# roughly value based since starting NAV = 1
trade_costs = abs(n_trades) * self.trading_cost_bps
time_cost = 0 if n_trades else self.time_cost_bps
self.costs[self.step] = trade_costs + time_cost
reward = start_position * market_return - self.costs[max(0, self.step-1)]
self.strategy_returns[self.step] = reward
if self.step != 0:
self.navs[self.step] = start_nav * (1 + self.strategy_returns[self.step])
self.market_navs[self.step] = start_market_nav * (1 + self.market_returns[self.step])
info = {'reward': reward,
'nav' : self.navs[self.step],
'costs' : self.costs[self.step]}
self.step += 1
return reward, info
def result(self):
"""returns current state as pd.DataFrame """
return pd.DataFrame({'action' : self.actions, # current action
'nav' : self.navs, # starting Net Asset Value (NAV)
'market_nav' : self.market_navs,
'market_return' : self.market_returns,
'strategy_return': self.strategy_returns,
'position' : self.positions, # eod position
'cost' : self.costs, # eod costs
'trade' : self.trades}) # eod trade)
class TradingEnvironment(gym.Env):
"""A simple trading environment for reinforcement learning.
Provides daily observations for a stock price series
An episode is defined as a sequence of 252 trading days with random start
Each day is a 'step' that allows the agent to choose one of three actions:
- 0: SHORT
- 1: HOLD
- 2: LONG
Trading has an optional cost (default: 10bps) of the change in position value.
Going from short to long implies two trades.
Not trading also incurs a default time cost of 1bps per step.
An episode begins with a starting Net Asset Value (NAV) of 1 unit of cash.
If the NAV drops to 0, the episode ends with a loss.
If the NAV hits 2.0, the agent wins.
The trading simulator tracks a buy-and-hold strategy as benchmark.
"""
metadata = {'render.modes': ['human']}
def __init__(self,
trading_days=252,
trading_cost_bps=1e-3,
time_cost_bps=1e-4,
ticker='AAPL'):
self.trading_days = trading_days
self.trading_cost_bps = trading_cost_bps
self.ticker = ticker
self.time_cost_bps = time_cost_bps
self.data_source = DataSource(trading_days=self.trading_days,
ticker=ticker)
self.simulator = TradingSimulator(steps=self.trading_days,
trading_cost_bps=self.trading_cost_bps,
time_cost_bps=self.time_cost_bps)
self.action_space = spaces.Discrete(3)
self.observation_space = spaces.Box(self.data_source.min_values,
self.data_source.max_values)
self.reset()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def step(self, action):
"""Returns state observation, reward, done and info"""
assert self.action_space.contains(action), '{} {} invalid'.format(action, type(action))
observation, done = self.data_source.take_step()
reward, info = self.simulator.take_step(action=action,
market_return=observation[0])
return observation, reward, done, info
def reset(self):
"""Resets DataSource and TradingSimulator; returns first observation"""
self.data_source.reset()
self.simulator.reset()
return self.data_source.take_step()[0]
# TODO
def render(self, mode='human'):
"""Not implemented"""
pass