-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculations.py
95 lines (71 loc) · 3.27 KB
/
calculations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import cv2
import math
import numpy as np
import time
class Vision(object):
def __init__(self, source, hslRange, coordinates, cameraMatrix):
self.hslRange = hslRange
self.focalLength = 980
self.realCoordinates = np.array(coordinates, dtype=np.float)
self.cameraMatrix = np.array(cameraMatrix['matrix'], dtype=np.float)
self.distortionMatrix = np.array(cameraMatrix['distortion'], dtype=np.float)
def getFrame(self):
if (self.processedFrame):
return self.processedFrame
else:
return False
def filterHSL(self, frame):
return cv2.inRange(cv2.cvtColor(frame, cv2.COLOR_BGR2HLS),
(self.hslRange['hue']['min'], self.hslRange['sat']['min'], self.hslRange['lum']['min']),
(self.hslRange['hue']['max'], self.hslRange['sat']['max'], self.hslRange['lum']['max']))
def getStrips(self, image):
# Get contours
img, contours, hierarchy = cv2.findContours(thresholdImg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Finds the 2 contours with the largest areas
areaArray = []
for contour in contours:
areaArray.append({'area': cv2.contourArea(contour), 'contour': contour})
areaArray.sort(key = lambda x: x['area'], reverse=True) # sorts by area in reverse order so that 2 largest will be first
return [areaArray[0]['contour'], areaArray[1]['contour']]
def getCorners(self, contour):
left = tuple(contour[contour[:, :, 0].argmin()][0])
right = tuple(contour[contour[:, :, 0].argmax()][0])
top = tuple(contour[contour[:, :, 1].argmin()][0])
bottom = tuple(contour[contour[:, :, 1].argmax()][0])
return {'topLeft': (left[0], top[1]),
'topRight': (right[0], top[1]),
'bottomLeft': (left[0], bottom[1]),
'bottomRight': (right[0], bottom[1]) }
def run(self, source):
# start FPS timer
fpsStart = time.time()
frame = source.read()
# Get size of source
width = source.get(3) # float
height = source.get(4)
cornerPoints = []
frame = filterHSL(frame)
self.processedFrame = frame
for strip in self.getStrips(frame):
corners = self.getCorners(strip)
cv2.circle(frame, corners['topLeft'], 4, (0, 0, 255), -1)
cv2.circle(frame, corners['topRight'], 4, (0, 255, 0), -1)
cv2.circle(frame, corners['bottomLeft'], 4, (255, 0, 0), -1)
cv2.circle(frame, corners['bottomRight'], 4, (255, 255, 0), -1)
cornerPoints.append((corners['topLeft'][0], corners['topLeft'][1]))
cornerPoints.append((corners['topRight'][0], corners['topRight'][1]))
cornerPoints.append((corners['bottomLeft'][0], corners['topLeft'][1]))
cornerPoints.append((corners['bottomRight'][0], corners['topRight'][1]))
# show the output image
# solve PnP problem
(result, rotation, translation) = cv2.solvePnP(self.realCoordinates, np.array(cornerPoints, dtype=np.float), self.cameraMatrix, self.distortionMatrix)
ZYX,jac=cv2.Rodrigues(rotation)
totalrotmax=np.array([[ZYX[0,0],ZYX[0,1],ZYX[0,2],translation[0]],
[ZYX[1,0],ZYX[1,1],ZYX[1,2],translation[1]],
[ZYX[2,0],ZYX[2,1],ZYX[2,2],translation[2]],
[0,0,0,1]])
WtoC=np.mat(totalrotmax)
inverserotmax=np.linalg.inv(totalrotmax)
f=inverserotmax
fps = 1 / (time.time() - fpsStart)
return {'matrix': inverserotmax, 'FPS': fps}