forked from GadgetAngel/BTT_SKR_13_14_14T_SD-DFU-Bootloader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDCard.c
715 lines (629 loc) · 18.6 KB
/
SDCard.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*****************************************************************************
* *
* DFU/SD/SDHC Bootloader for LPC17xx *
* *
* by Triffid Hunter *
* *
* *
* This firmware is Copyright (C) 2009-2010 Michael Moon aka Triffid_Hunter *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *
* *
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "SDCard.h"
#include "gpio.h"
#include "config.h"
//static const uint8_t OXFF = 0xFF;
//#define debug
int SDCard__cmd(int cmd, int arg);
int SDCard__cmdx(int cmd, int arg);
int SDCard__cmd8(void);
int SDCard__cmd58(uint32_t *);
int SDCard_initialise_card(void);
int SDCard_initialise_card_v1(void);
int SDCard_initialise_card_v2(void);
int SDCard__read(uint8_t *buffer, int length);
int SDCard__write(const uint8_t *buffer, int length);
// int start_multi_write(uint32_t start_block, uint32_t n_blocks);
// int validate_buffer(uint8_t *, int);
// int end_multi_write(void);
// int start_multi_read(uint32_t start_block, uint32_t n_blocks);
// int validate_buffer(uint8_t *, int);
// int check_buffer(uint8_t *, int);
// int end_multi_read(void);
uint32_t SDCard__sd_sectors(void);
uint32_t _sectors;
// SPI _spi;
PinName _cs;
int busyflags;
// DMA *write_dma;
// DMA *read_dma;
uint32_t busy_buffers;
int cardtype;
#define SD_COMMAND_TIMEOUT 4096
void SDCard_init(PinName mosi, PinName miso, PinName sclk, PinName cs)
{
SPI_init(mosi, miso, sclk);
GPIO_init(cs);
GPIO_output(cs);
GPIO_set(cs);
_cs = cs;
}
#define R1_IDLE_STATE (1 << 0)
#define R1_ERASE_RESET (1 << 1)
#define R1_ILLEGAL_COMMAND (1 << 2)
#define R1_COM_CRC_ERROR (1 << 3)
#define R1_ERASE_SEQUENCE_ERROR (1 << 4)
#define R1_ADDRESS_ERROR (1 << 5)
#define R1_PARAMETER_ERROR (1 << 6)
// Types
// - v1.x Standard Capacity
// - v2.x Standard Capacity
// - v2.x High Capacity
// - Not recognised as an SD Card
#define SDCARD_FAIL 0
#define SDCARD_V1 1
#define SDCARD_V2 2
#define SDCARD_V2HC 3
#define BUSY_FLAG_MULTIREAD 1
#define BUSY_FLAG_MULTIWRITE 2
#define BUSY_FLAG_ENDREAD 4
#define BUSY_FLAG_ENDWRITE 8
#define BUSY_FLAG_WAITNOTBUSY (1<<31)
#define SDCMD_GO_IDLE_STATE 0
#define SDCMD_ALL_SEND_CID 2
#define SDCMD_SEND_RELATIVE_ADDR 3
#define SDCMD_SET_DSR 4
#define SDCMD_SELECT_CARD 7
#define SDCMD_SEND_IF_COND 8
#define SDCMD_SEND_CSD 9
#define SDCMD_SEND_CID 10
#define SDCMD_STOP_TRANSMISSION 12
#define SDCMD_SEND_STATUS 13
#define SDCMD_GO_INACTIVE_STATE 15
#define SDCMD_SET_BLOCKLEN 16
#define SDCMD_READ_SINGLE_BLOCK 17
#define SDCMD_READ_MULTIPLE_BLOCK 18
#define SDCMD_WRITE_BLOCK 24
#define SDCMD_WRITE_MULTIPLE_BLOCK 25
#define SDCMD_PROGRAM_CSD 27
#define SDCMD_SET_WRITE_PROT 28
#define SDCMD_CLR_WRITE_PROT 29
#define SDCMD_SEND_WRITE_PROT 30
#define SDCMD_ERASE_WR_BLOCK_START 32
#define SDCMD_ERASE_WR_BLK_END 33
#define SDCMD_ERASE 38
#define SDCMD_LOCK_UNLOCK 42
#define SDCMD_APP_CMD 55
#define SDCMD_GEN_CMD 56
#define SD_ACMD_SET_BUS_WIDTH 6
#define SD_ACMD_SD_STATUS 13
#define SD_ACMD_SEND_NUM_WR_BLOCKS 22
#define SD_ACMD_SET_WR_BLK_ERASE_COUNT 23
#define SD_ACMD_SD_SEND_OP_COND 41
#define SD_ACMD_SET_CLR_CARD_DETECT 42
#define SD_ACMD_SEND_CSR 51
#define BLOCK2ADDR(block) (((cardtype == SDCARD_V1) || (cardtype == SDCARD_V2))?(block << 9):((cardtype == SDCARD_V2HC)?(block):0))
#define fprintf(...) do {} while (0)
// #define fputs(...) do {} while (0)
int SDCard_initialise_card() {
// Set to 25kHz for initialisation, and clock card with cs = 1
SPI_frequency(25000);
GPIO_set(_cs);
for(int i=0; i<16; i++) {
SPI_write(0xFF);
}
// send CMD0, should return with all zeros except IDLE STATE set (bit 0)
if(SDCard__cmd(SDCMD_GO_IDLE_STATE, 0) != R1_IDLE_STATE) {
#ifdef debug
DBGPRINTF("Could not put SD card in to SPI idle state\n");
#endif
return cardtype = SDCARD_FAIL;
}
// send CMD8 to determine whether it is ver 2.x
int r = SDCard__cmd8();
if(r == R1_IDLE_STATE) {
#ifdef debug
DBGPRINTF("Looks like a SDHC Card\n");
#endif
return SDCard_initialise_card_v2();
} else if(r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
return SDCard_initialise_card_v1();
} else {
#if ENABLED(DEBUG_MESSAGES)
printf(EPFX "Not in idle state after sending CMD8 (not an SD card?)\n");
#endif
return cardtype = SDCARD_FAIL;
}
}
int SDCard_initialise_card_v1() {
for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
SDCard__cmd(SDCMD_APP_CMD, 0);
if(SDCard__cmd(SD_ACMD_SD_SEND_OP_COND, 0) == 0) {
return cardtype = SDCARD_V1;
}
}
DBGPRINTF("Timeout waiting for v1.x card\n");
return SDCARD_FAIL;
}
int SDCard_initialise_card_v2() {
for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
SDCard__cmd(SDCMD_APP_CMD, 0);
if(SDCard__cmd(SD_ACMD_SD_SEND_OP_COND, (1UL<<30)) == 0) {
uint32_t ocr;
SDCard__cmd58(&ocr);
if (ocr & (1UL<<30))
return cardtype = SDCARD_V2HC;
else
return cardtype = SDCARD_V2;
}
}
DBGPRINTF("Timeout waiting for v2.x card\n");
return cardtype = SDCARD_FAIL;
}
int SDCard_disk_initialize()
{
_sectors = 0;
int i = SDCard_initialise_card();
if (i == 0) {
return 1;
}
_sectors = SDCard__sd_sectors();
// Set block length to 512 (CMD16)
if(SDCard__cmd(SDCMD_SET_BLOCKLEN, 512) != 0) {
DBGPRINTF_E("Set 512-byte block timed out\n");
return 1;
}
SPI_frequency(SPI_SPEED);
return 0;
}
int SDCard_disk_write(const uint8_t *buffer, uint32_t block_number)
{
// set write address for single block (CMD24)
if(SDCard__cmd(SDCMD_WRITE_BLOCK, BLOCK2ADDR(block_number)) != 0) {
return 1;
}
// send the data block
SDCard__write(buffer, 512);
return 0;
}
int SDCard_disk_read(uint8_t *buffer, uint32_t block_number)
{
// DBGPRINTF("SD:read type %d: %d(%x) -> %d(%x)\n", cardtype, block_number, block_number, BLOCK2ADDR(block_number), BLOCK2ADDR(block_number));
// set read address for single block (CMD17)
if(SDCard__cmd(SDCMD_READ_SINGLE_BLOCK, BLOCK2ADDR(block_number)) != 0) {
return 1;
}
// receive the data
SDCard__read(buffer, 512);
return 0;
}
int SDCard_disk_erase(uint32_t block_number, int count)
{
return -1;
}
int SDCard_disk_status() { return (_sectors > 0)?0:1; }
int SDCard_disk_sync() {
// TODO: wait for DMA, wait for card not busy
return 0;
}
uint32_t SDCard_disk_sectors() { return _sectors; }
uint64_t SDCard_disk_size() { return ((uint64_t) _sectors) << 9; }
uint32_t SDCard_disk_blocksize() { return (1<<9); }
// int SDCard_disk_canDMA() { return SPI_can_DMA(); }
//
// int SDCard_start_multi_write(uint32_t start_block, uint32_t n_blocks)
// {
// if (!write_dma)
// write_dma = DMA_create();
// if (!write_dma)
// return -1;
//
// if (busyflags)
// return -1;
//
// if (n_blocks == 0)
// return 0;
//
// __disable_irq();
// if (busyflags & ~BUSY_FLAG_WAITNOTBUSY) {
// __enable_irq();
// return -1;
// }
// __enable_irq();
//
// busyflags |= BUSY_FLAG_MULTIWRITE;
//
// // ACMD 23 - SET_WR_BLK_ERASE_COUNT - Set number of blocks to be pre-erased before writing
// _cmd(SDCMD_APP_CMD, 0);
// _cmd(SD_ACMD_SET_WR_BLK_ERASE_COUNT, n_blocks);
//
// // start multi-write
// _cmd(SDCMD_WRITE_MULTIPLE_BLOCK, BLOCK2ADDR(start_block));
//
// return 0;
// }
// int SDCard_validate_buffer(uint8_t *buffer, int bufferlength)
// {
// if (bufferlength != 512)
// return -1;
//
// if (busyflags & BUSY_FLAG_WAITNOTBUSY)
// return -1;
//
// if (busyflags & BUSY_FLAG_MULTIREAD) {
// // disk user has provided an empty buffer for us to fill
// // TODO: set up the DMA transfer, then flick the check flag when it's done
// read_dma->destination(buffer, bufferlength);
// read_dma->start();
// write_dma->start();
// busyflags |= BUSY_FLAG_WAITNOTBUSY;
// return bufferlength;
// }
// else if (busyflags & BUSY_FLAG_MULTIWRITE) {
// // disk user has provided a full buffer for us to empty
// // TODO: continue DMA
// SPI_write(0xFE);
// write_dma->source(buffer, bufferlength);
// write_dma->start();
// busyflags |= BUSY_FLAG_WAITNOTBUSY;
// return bufferlength;
// }
// else if (busyflags & BUSY_FLAG_ENDREAD) {
// _cmd(SDCMD_STOP_TRANSMISSION, 0);
// return 0;
// }
// else if (busyflags & BUSY_FLAG_ENDWRITE) {
// _cmd(SDCMD_STOP_TRANSMISSION, 0);
// return 0;
// }
// return -1;
// }
// int SDCard_end_multi_write()
// {
// busyflags |= BUSY_FLAG_ENDWRITE;
// return 0;
// }
//
// int SDCard_start_multi_read(uint32_t start_block, uint32_t n_blocks)
// {
// if (!read_dma)
// read_dma = DMA_create();
// if (!read_dma)
// return -1;
//
//
// __disable_irq();
// if (busyflags & ~BUSY_FLAG_WAITNOTBUSY) {
// __enable_irq();
// return -1;
// }
// __enable_irq();
//
// busyflags |= BUSY_FLAG_MULTIREAD;
//
// // CMD 18 - READ_MULTIPLE_BLOCK
// _cmd(18, start_block);
//
// return n_blocks;
// }
//
// bool SDCard_check_buffer(uint8_t *buffer, int bufferlength)
// {
// if (busyflags & BUSY_FLAG_MULTIREAD)
// return read_dma->busy();
// if (busyflags & BUSY_FLAG_MULTIWRITE)
// return write_dma->busy();
// return false;
// }
//
// int SDCard_end_multi_read()
// {
// busyflags |= BUSY_FLAG_ENDREAD;
// return 0;
// }
//
// void SDCard_dma_source_event()
// {
// if (busyflags & BUSY_FLAG_MULTIREAD)
// {
// if (read_dma->busy() == false)
// {
// }
// }
// else if (busyflags & BUSY_FLAG_MULTIWRITE)
// {
// if (write_dma->busy() == false)
// {
// // send checksum
// SPI_write(0xFF);
// SPI_write(0xFF);
// busyflags |= BUSY_FLAG_WAITNOTBUSY;
// }
// }
// }
//
// void SDCard_dma_dest_event()
// {
// }
// void SDCard_on_main_loop()
// {
// if (busyflags & BUSY_FLAG_MULTIREAD)
// {
// if (busyflags & BUSY_FLAG_ENDREAD)
// {
//
// }
// }
// if (busyflags & BUSY_FLAG_MULTIWRITE)
// {
// if (busyflags & BUSY_FLAG_ENDWRITE)
// {
// if (SPI_write(0xFF) == 0)
// {
// busyflags &= ~BUSY_FLAG_ENDWRITE;
// }
// }
// }
// }
// PRIVATE FUNCTIONS
int SDCard__cmd(int cmd, int arg) {
// _cs = 0;
GPIO_clear(_cs);
#ifdef debug
DBGPRINTF("SDCMD:%u ", cmd);
#endif
// send a command
SPI_write(0x40 | cmd);
SPI_write(arg >> 24);
SPI_write(arg >> 16);
SPI_write(arg >> 8);
SPI_write(arg >> 0);
SPI_write(0x95);
// wait for the repsonse (response[7] == 0)
for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = SPI_write(0xFF);
if(!(response & 0x80)) {
GPIO_set(_cs);
SPI_write(0xFF);
#ifdef debug
printf(" <%u\n", response);
#endif
return response;
}
}
#ifdef debug
printf("Timeout\n");
#endif
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return -1; // timeout
}
int SDCard__cmdx(int cmd, int arg) {
// _cs = 0;
GPIO_clear(_cs);
#ifdef debug
DBGPRINTF("SDCMDx:%u ", cmd);
#endif
// send a command
SPI_write(0x40 | cmd);
SPI_write(arg >> 24);
SPI_write(arg >> 16);
SPI_write(arg >> 8);
SPI_write(arg >> 0);
SPI_write(0x95);
// wait for the repsonse (response[7] == 0)
for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = SPI_write(0xFF);
if(!(response & 0x80)) {
#ifdef debug
DBGPRINTF(" <%u\n", response);
#endif
return response;
}
}
#ifdef debug
DBGPRINTF_E("Timeout\n");
#endif
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return -1; // timeout
}
int SDCard__cmd58(uint32_t *ocr) {
// _cs = 0;
GPIO_clear(_cs);
int arg = 0;
// send a command
SPI_write(0x40 | 58);
SPI_write(arg >> 24);
SPI_write(arg >> 16);
SPI_write(arg >> 8);
SPI_write(arg >> 0);
SPI_write(0x95);
// wait for the repsonse (response[7] == 0)
for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = SPI_write(0xFF);
if(!(response & 0x80)) {
*ocr = SPI_write(0xFF) << 24;
*ocr |= SPI_write(0xFF) << 16;
*ocr |= SPI_write(0xFF) << 8;
*ocr |= SPI_write(0xFF) << 0;
// printf("OCR = 0x%08X\n", *ocr);
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return response;
}
}
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return -1; // timeout
}
int SDCard__cmd8() {
// _cs = 0;
GPIO_clear(_cs);
// send a command
SPI_write(0x40 | SDCMD_SEND_IF_COND); // CMD8
SPI_write(0x00); // reserved
SPI_write(0x00); // reserved
SPI_write(0x01); // 3.3v
SPI_write(0xAA); // check pattern
SPI_write(0x87); // crc
// wait for the repsonse (response[7] == 0)
for(int i=0; i<SD_COMMAND_TIMEOUT * 1000; i++) {
char response[5];
response[0] = SPI_write(0xFF);
if(!(response[0] & 0x80)) {
for(int j=1; j<5; j++) {
response[j] = SPI_write(0xFF);
}
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return response[0];
}
}
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return -1; // timeout
}
int SDCard__read(uint8_t *buffer, int length) {
// _cs = 0;
GPIO_clear(_cs);
// read until start byte (0xFF)
while(SPI_write(0xFF) != 0xFE);
// read data
for(int i=0; i<length; i++) {
buffer[i] = SPI_write(0xFF);
}
SPI_write(0xFF); // checksum
SPI_write(0xFF);
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return 0;
}
int SDCard__write(const uint8_t *buffer, int length) {
// _cs = 0;
GPIO_clear(_cs);
// indicate start of block
SPI_write(0xFE);
// write the data
for(int i=0; i<length; i++) {
SPI_write(buffer[i]);
}
// write the checksum
SPI_write(0xFF);
SPI_write(0xFF);
// check the repsonse token
if((SPI_write(0xFF) & 0x1F) != 0x05) {
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return 1;
}
// wait for write to finish
while(SPI_write(0xFF) == 0);
// _cs = 1;
GPIO_set(_cs);
SPI_write(0xFF);
return 0;
}
static int ext_bits(uint8_t *data, int msb, int lsb)
{
int bits = 0;
int size = 1 + msb - lsb;
for(int i=0; i<size; i++) {
int position = lsb + i;
int byte = 15 - (position >> 3);
int bit = position & 0x7;
int value = (data[byte] >> bit) & 1;
bits |= value << i;
}
return bits;
}
uint32_t SDCard__sd_sectors()
{
// CMD9, Response R2 (R1 byte + 16-byte block read)
if(SDCard__cmdx(SDCMD_SEND_CSD, 0) != 0) {
DBGPRINTF_E("Didn't get a response from the disk\n");
return 0;
}
uint8_t csd[16];
if(SDCard__read(csd, 16) != 0) {
#if ENABLED(DEBUG_MESSAGES)
printf(EPFX "Couldn't read csd response from disk\n");
#endif
return 0;
}
// csd_structure : csd[127:126]
// c_size : csd[73:62]
// c_size_mult : csd[49:47]
// read_bl_len : csd[83:80] - the *maximum* read block length
uint32_t csd_structure = ext_bits(csd, 127, 126);
// printf("CSD_STRUCT = %d\n", csd_structure);
if (csd_structure == 0)
{
if (cardtype == SDCARD_V2HC)
{
DBGPRINTF_E("SDHC card with regular SD descriptor\n");
return 0;
}
uint32_t c_size = ext_bits(csd, 73, 62);
uint32_t c_size_mult = ext_bits(csd, 49, 47);
uint32_t read_bl_len = ext_bits(csd, 83, 80);
uint32_t block_len = 1 << read_bl_len;
uint32_t mult = 1 << (c_size_mult + 2);
uint32_t blocknr = (c_size + 1) * mult;
if (block_len >= 512) return blocknr * (block_len >> 9);
else return (blocknr * block_len) >> 9;
}
else if (csd_structure == 1)
{
if (cardtype != SDCARD_V2HC)
{
DBGPRINTF_E("SD V1 or V2 card with SDHC descriptor\n");
return 0;
}
uint32_t c_size = ext_bits(csd, 69, 48);
uint32_t blocknr = (c_size + 1) * 1024;
return blocknr;
}
else
{
DBGPRINTF_E("Invalid CSD %lu\n", csd_structure);
return 0;
}
// memory capacity = BLOCKNR * BLOCK_LEN
// where
// BLOCKNR = (C_SIZE+1) * MULT
// MULT = 2^(C_SIZE_MULT+2) (C_SIZE_MULT < 8)
// BLOCK_LEN = 2^READ_BL_LEN, (READ_BL_LEN < 12)
// uint32_t block_len = 1 << read_bl_len;
// uint32_t mult = 1 << (c_size_mult + 2);
// uint32_t blocknr = (c_size + 1) * mult;
// uint32_t capacity = blocknr * block_len;
// uint32_t blocks = capacity / 512;
// uint32_t blocks;
// if (block_len >= 512) return blocknr * (block_len >> 9);
// else return (blocknr * block_len) >> 9;
// return blocks;
}