-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcolab_utils.py
111 lines (96 loc) · 4.16 KB
/
colab_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import os.path as osp
import numpy as np
import torch.nn.functional as F
seq_dict = {
'A': 0,
'U': 1,
'C': 2,
'G': 3
}
def base_matrix(_max_length, device):
base_matrix = torch.ones(_max_length, _max_length)
for i in range(_max_length):
st, en = max(i-3, 0), min(i+3, _max_length-1)
for j in range(st, en + 1):
base_matrix[i, j] = 0.
return base_matrix.to(device)
def constraint_matrix(x):
base_a, base_u, base_c, base_g = x[:, :, 0], x[:, :, 1], x[:, :, 2], x[:, :, 3]
batch = base_a.shape[0]
length = base_a.shape[1]
au = torch.matmul(base_a.view(batch, length, 1), base_u.view(batch, 1, length))
au_ua = au + torch.transpose(au, -1, -2)
cg = torch.matmul(base_c.view(batch, length, 1), base_g.view(batch, 1, length))
cg_gc = cg + torch.transpose(cg, -1, -2)
ug = torch.matmul(base_u.view(batch, length, 1), base_g.view(batch, 1, length))
ug_gu = ug + torch.transpose(ug, -1, -2)
return (au_ua + cg_gc + ug_gu) * base_matrix(x.shape[1], x.device)
def sequence2onehot(seq, device):
seqs = list(map(lambda x: seq_dict[x], seq))
return torch.tensor(seqs).unsqueeze(0).to(device)
def get_cut_len(l):
return (((l - 1) // 16) + 1) * 16
def process_seqs(seq, device):
seq_len = len(seq)
seq = sequence2onehot(seq, device=device)
nseq_len = get_cut_len(seq_len)
nseq = F.pad(seq, (0, nseq_len - seq_len))
nseq_one_hot = F.one_hot(nseq).float()
return nseq, nseq_one_hot, seq_len
def row_col_softmax(y):
row_softmax = torch.softmax(y, dim=-1)
col_softmax = torch.softmax(y, dim=-2)
return 0.5 * (row_softmax + col_softmax)
def row_col_argmax(y):
y_pred = row_col_softmax(y)
y_hat = y_pred + torch.randn_like(y) * 1e-12
col_max = torch.argmax(y_hat, 1)
col_one = torch.zeros_like(y_hat).scatter(1, col_max.unsqueeze(1), 1.0)
row_max = torch.argmax(y_hat, 2)
row_one = torch.zeros_like(y_hat).scatter(2, row_max.unsqueeze(2), 1.0)
int_one = row_one * col_one
return int_one
def ct_file_output(pairs, seq, seq_name, save_result_path):
col1 = np.arange(1, len(seq) + 1, 1)
col2 = np.array([i for i in seq])
col3 = np.arange(0, len(seq), 1)
col4 = np.append(np.delete(col1, 0), [0])
col5 = np.zeros(len(seq), dtype=int)
for i, I in enumerate(pairs):
col5[I[0]-1] = int(I[1])
col6 = np.arange(1, len(seq) + 1, 1)
temp = np.vstack((np.char.mod('%d', col1), col2, np.char.mod('%d', col3), np.char.mod('%d', col4),
np.char.mod('%d', col5), np.char.mod('%d', col6))).T
np.savetxt(osp.join(save_result_path, seq_name.replace('/','_'))+'.ct', (temp), delimiter='\t', fmt="%s", header='>seq length: ' + str(len(seq)) + '\t seq name: ' + seq_name.replace('/','_') , comments='')
return
def seq2dot(seq):
idx = np.arange(1, len(seq) + 1)
dot_file = np.array(['_'] * len(seq))
dot_file[seq > idx] = '('
dot_file[seq < idx] = ')'
dot_file[seq == 0] = '.'
dot_file = ''.join(dot_file)
return dot_file
def save_ct(predict_matrix, seq_ori, name):
seq_tmp = torch.mul(predict_matrix.cpu().argmax(axis=1), predict_matrix.cpu().sum(axis = 1).clamp_max(1)).numpy().astype(int)
seq_tmp[predict_matrix.cpu().sum(axis = 1) == 0] = -1
dot_list = seq2dot((seq_tmp+1).squeeze())
letter = 'AUCG'
seq_letter = ''.join([letter[item] for item in np.nonzero(seq_ori)[:,1]])
seq = ((seq_tmp + 1).squeeze(), torch.arange(predict_matrix.shape[-1]).numpy() + 1)
cur_pred = [(seq[0][i],seq[1][i]) for i in np.arange(len(seq[0])) if seq[0][i] != 0]
ct_file_output(cur_pred, seq_letter, name, './')
return
def visual_get_bases(seq):
a_bases, u_bases, c_bases, g_bases = [], [], [], []
for ii, s in enumerate(seq):
if s == 'A': a_bases.append(ii+1)
if s == 'U': u_bases.append(ii+1)
if s == 'C': c_bases.append(ii+1)
if s == 'G': g_bases.append(ii+1)
a_bases = ''.join([str(s)+',' for s in a_bases])[:-1]
u_bases = ''.join([str(s)+',' for s in u_bases])[:-1]
c_bases = ''.join([str(s)+',' for s in c_bases])[:-1]
g_bases = ''.join([str(s)+',' for s in g_bases])[:-1]
return a_bases, u_bases, c_bases, g_bases