-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
538 lines (456 loc) · 19.5 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import logging
import math
import os
import pickle
import sys
import torch
from dataclasses import dataclass, field
import wandb
import numpy as np
import transformers
from transformers import (
MODEL_FOR_MASKED_LM_MAPPING,
HfArgumentParser,
Trainer,
TrainingArguments,
is_torch_tpu_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
import datasets
from datasets import load_dataset, load_metric
from typing import Optional, List, Dict, Any, Tuple
from tokenization import MyTokenizer
from model import BertForSequenceClassification,BertForMaskedLM, BertForCL
from configuration_utils import ModelConfig
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
vocab_file: Optional[str] = field(
default=None, metadata={"help": "The vocabulary file (a text file)"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
mask_prediction: bool = field(
default=False,
metadata={
"help": "Whether to do mask prediction"
},
)
outcome_prediction: bool = field(
default=False,
metadata={
"help": "Whether to do outcome prediction"
},
)
pooler_type: str = field(
default="cls",
metadata={
"help": "What kind of pooler to use (cls, cls_before_pooler, avg, avg_top2, avg_first_last)."
}
)
temp: float = field(
default=0.05,
metadata={
"help": "Temperature for softmax."
}
)
mlm_weight: float = field(
default=0.1,
metadata={
"help": "Weight for MLM auxiliary objective (only effective if --do_mlm)."
}
)
time_embedding: bool = field(
default=False,
metadata={
"help": "Whether to use time_embedding"
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_data_file: List[str] = field(
default=None,
metadata={"help": "The input training data file (a text file)."}
)
eval_data_file: List[str] = field(
default=None,
metadata={"help": "The input eval data file (a text file)."}
)
data_path: str = field(
default=None,
metadata={"help": "The input training data path (directory)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
counterfactual_inference: bool = field(
default=False,
metadata={
"help": "Whether to do counterfactual inference"
},
)
baseline_window: int = field(
default=90,
metadata={
"help": "baseline_windowe"
},
)
fix_window_length: int = field(
default=30,
metadata={
"help": "fix_window_length"
},
)
training_set_fraction: float = field(
default=1,
metadata={
"help": "training_set_fraction"
},
)
@dataclass
class myDataCollator:
mask_prediction: bool = False
outcome_prediction: bool = False
counterfactual_inference: bool = False
mlm_probability: float = 0.15
tokenizer: MyTokenizer = None
def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, Any]:
input_ids = []
attention_mask = []
outcome_labels = []
token_type_ids = []
visit_time_ids = []
physical_time_ids = []
# treatment_labels = []
for b in batch:
input_ids.append(b['input_ids'])
attention_mask.append(b['attention_mask'])
outcome_labels.append(b['outcome'])
token_type_ids.append(b['token_type_ids'])
visit_time_ids.append(b['visit_time_ids'])
physical_time_ids.append(b['physical_time_ids'])
input_ids = torch.tensor(input_ids,dtype=torch.long)
attention_mask = torch.tensor(attention_mask,dtype=torch.long)
outcome_labels = torch.tensor(outcome_labels,dtype=torch.long)
token_type_ids = torch.tensor(token_type_ids,dtype=torch.long)
visit_time_ids = torch.tensor(visit_time_ids, dtype=torch.long)
physical_time_ids = torch.tensor(physical_time_ids, dtype=torch.long)
# treatment_labels = torch.tensor(treatment_labels, dtype=torch.long)
batch = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids,
"visit_time_ids": visit_time_ids, "physical_time_ids": physical_time_ids}
if self.mask_prediction:
input_ids, mask_labels, token_type_ids = self.torch_mask_tokens(input_ids,token_type_ids)
batch['input_ids'] = input_ids
batch['mask_labels'] = mask_labels
batch['token_type_ids'] = token_type_ids
if self.outcome_prediction:
batch['outcome_labels'] = outcome_labels
return batch
def torch_mask_tokens(self, inputs: Any, token_type_ids: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in
labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.vocab.get(self.tokenizer.mask_token)
#
# # 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
#
# # The rest of the time (10% of the time) we keep the masked input tokens unchanged
# indices_replaced = torch.bernoulli(torch.full(labels.shape, 1.0)).bool() & masked_indices
# mask_token_id = self.tokenizer.vocab.get(self.tokenizer.mask_token)
# inputs[indices_replaced] = mask_token_id
# token_type_ids[indices_replaced] = self.tokenizer.convert_token_ids_to_token_type_ids(mask_token_id)
return inputs, labels, token_type_ids
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
data_args.train_data_file = [os.path.join(data_args.data_path, file)
for file in os.listdir(data_args.data_path)]
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Load dataset
data_files = data_args.train_data_file
if data_args.eval_data_file:
# data_files = {"train": data_args.train_data_file, "validation": data_args.eval_data_file}
data_files = {"train": data_args.train_data_file, "validation": data_args.eval_data_file}
raw_datasets = load_dataset('json', data_files=data_files, field="data")
else:
data_files = {"train": data_args.train_data_file}
raw_datasets = load_dataset('json', data_files=data_files, field="data",cache_dir=model_args.cache_dir)
if data_args.validation_split_percentage > 0:
raw_datasets = raw_datasets['train'].train_test_split(test_size=data_args.validation_split_percentage/100)
raw_datasets['train'] = raw_datasets['train']
raw_datasets['validation'] = raw_datasets['test']
myTokenizer = MyTokenizer(
vocab_file=model_args.vocab_file,
baseline_window=data_args.baseline_window,
fix_window_length=data_args.fix_window_length)
max_seq_length = data_args.max_seq_length
def prepare_data(example):
result = myTokenizer.encode(example, max_length=max_seq_length)
outcomes = example['outcome']
result['outcome'] = 1
return result
tokenized_datasets = raw_datasets.map(prepare_data, batched=False, num_proc=16,
load_from_cache_file=not data_args.overwrite_cache)
if training_args.do_train:
train_dataset = tokenized_datasets["train"]
if training_args.do_eval:
eval_dataset = tokenized_datasets["validation"]
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
logits = logits.softmax(dim=-1)
return logits.argmax(dim=-1)
metric = load_metric("accuracy")
def compute_metrics(eval_preds):
from scipy.special import softmax
from sklearn.metrics import roc_auc_score,f1_score
logits, labels = eval_preds
logits = softmax(logits,axis=-1)
preds = logits.argmax(axis=-1)
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics
labels = labels.reshape(-1)
preds = preds.reshape(-1)
mask = labels != -100
labels = labels[mask]
preds = preds[mask]
results = metric.compute(predictions=preds, references=labels)
results['logits'] = logits
results['auc'] = roc_auc_score(labels,logits[:,1])
results['f1'] = f1_score(labels,preds)
return results
config = ModelConfig(
vocab_size=len(myTokenizer),
type_vocab_size=len(myTokenizer.type),
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
max_visit_time_embeddings = data_args.baseline_window+1,
max_physical_time_embeddings= data_args.baseline_window//data_args.fix_window_length+1,
time_embedding=model_args.time_embedding
)
if not model_args.model_name_or_path:
logger.info("Train model from scratch...")
if model_args.mask_prediction:
model = BertForMaskedLM(config)
else:
model = BertForSequenceClassification(config)
else:
logger.info("Loading Model from pretrained...")
if model_args.mask_prediction:
model = BertForMaskedLM.from_pretrained(model_args.model_name_or_path)
else:
model = BertForSequenceClassification.from_pretrained(model_args.model_name_or_path)
data_collator = myDataCollator(
tokenizer=myTokenizer,
mask_prediction=model_args.mask_prediction,
outcome_prediction=model_args.outcome_prediction,
counterfactual_inference=data_args.counterfactual_inference)
training_args.remove_unused_columns = False
if model_args.mask_prediction:
training_args.label_names = ["mask_labels"]
if model_args.outcome_prediction:
training_args.label_names = ["outcome_labels"]
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
# tokenizer=myTokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
logits = metrics.pop("eval_logits")
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
main()