forked from Dapwner/CVAE-Tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
231 lines (195 loc) · 7.79 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import json
import math
import os
import numpy as np
from torch.utils.data import Dataset
from utils.tools import pad_1D, pad_2D
class Dataset(Dataset):
def __init__(
self, filename, preprocess_config, model_config, train_config, sort=False, drop_last=False
):
self.dataset_name = preprocess_config["dataset"]
self.metadata_csv = preprocess_config["metadata"]
self.preprocessed_path = preprocess_config["path"]["preprocessed_path"]
self.batch_size = train_config["optimizer"]["batch_size"]
self.n_frames_per_step = model_config["decoder"]["n_frames_per_step"]
# self.load_spker_embed = model_config["multi_speaker"] \
# and preprocess_config["preprocessing"]["speaker_embedder"] != 'none'
self.load_spker_embed = False
self.accent_to_select = preprocess_config['accents']
with open(os.path.join(self.preprocessed_path, "speakers.json")) as f:
self.speaker_map = json.load(f)
with open(os.path.join(self.preprocessed_path, "accents.json")) as f:
self.accent_map = json.load(f)
self.accents_to_indices = dict()
for _idx, acc in enumerate(preprocess_config['accents']):
self.accents_to_indices[acc] = _idx
self.basename, self.speaker, self.raw_text = self.process_meta(
filename,
self.accent_map,
self.accent_to_select,
)
self.sort = sort
self.drop_last = drop_last
def __len__(self):
return len(self.raw_text)
def __getitem__(self, idx):
basename = self.basename[idx]
speaker = self.speaker[idx]
speaker_id = self.speaker_map[speaker]
accent = self.accent_map[speaker]
raw_text = self.raw_text[idx]
phone_path = os.path.join(
self.preprocessed_path,
"text",
"{}-text-{}.npy".format(speaker, basename),
)
text = np.load(phone_path)
mel_path = os.path.join(
self.preprocessed_path,
"mel",
"{}-mel-{}.npy".format(speaker, basename),
)
mel = np.load(mel_path)
spker_embed = np.load(os.path.join(
self.preprocessed_path,
"spker_embed",
"{}-spker_embed.npy".format(speaker),
)) if self.load_spker_embed else None
if accent in self.accent_to_select:
sample = {
"id": basename,
"speaker": speaker_id,
"text": text,
"raw_text": raw_text,
"mel": mel,
"spker_embed": spker_embed,
"accents": self.accents_to_indices[accent],
}
return sample
else:
return None
def process_meta(self, filename,accent_map,accent_to_select):
with open(
os.path.join(self.preprocessed_path, filename), "r", encoding="utf-8"
) as f:
name = []
speaker = []
text = []
for line in f.readlines():
n, s, t = line.strip("\n").split("|")
if accent_map[s] in accent_to_select:
name.append(n)
speaker.append(s)
text.append(t)
return name, speaker, text
def get_gates_from_mel_lens(self, mel_lens, max_target_len):
gates = np.zeros([mel_lens.shape[0], max_target_len])
for i, mel_len in enumerate(mel_lens):
gates[i, mel_len-1:] = 1
return gates
def reprocess(self, data, idxs):
ids = [data[idx]["id"] for idx in idxs]
speakers = [data[idx]["speaker"] for idx in idxs]
accents = [data[idx]["accents"] for idx in idxs]
texts = [data[idx]["text"] for idx in idxs]
raw_texts = [data[idx]["raw_text"] for idx in idxs]
mels = [data[idx]["mel"] for idx in idxs]
spker_embeds = np.concatenate(np.array([data[idx]["spker_embed"] for idx in idxs]), axis=0) \
if self.load_spker_embed else None
text_lens = np.array([text.shape[0] for text in texts])
mel_lens = np.array([mel.shape[0] for mel in mels])
max_target_len = max(mel_lens)
r_len_pad = max_target_len % self.n_frames_per_step
if r_len_pad != 0:
max_target_len += self.n_frames_per_step - r_len_pad
assert max_target_len % self.n_frames_per_step == 0
speakers = np.array(speakers)
texts = pad_1D(texts)
mels = pad_2D(mels, max_target_len)
gates = self.get_gates_from_mel_lens(mel_lens, max_target_len)
return (
ids,
raw_texts,
speakers,
texts,
text_lens,
max(text_lens),
mels,
mel_lens,
max_target_len,
r_len_pad,
gates,
spker_embeds,
accents,
)
def collate_fn(self, data):
data_size = len(data)
if self.sort:
len_arr = np.array([d["text"].shape[0] for d in data])
idx_arr = np.argsort(-len_arr)
else:
idx_arr = np.arange(data_size)
tail = idx_arr[len(idx_arr) - (len(idx_arr) % self.batch_size) :]
idx_arr = idx_arr[: len(idx_arr) - (len(idx_arr) % self.batch_size)]
idx_arr = idx_arr.reshape((-1, self.batch_size)).tolist()
if not self.drop_last and len(tail) > 0:
idx_arr += [tail.tolist()]
output = list()
for idx in idx_arr:
output.append(self.reprocess(data, idx))
return output
class TextDataset(Dataset):
def __init__(self, filepath, preprocess_config, model_config):
self.preprocessed_path = preprocess_config["path"]["preprocessed_path"]
self.load_spker_embed = model_config["multi_speaker"] \
and preprocess_config["preprocessing"]["speaker_embedder"] != 'none'
self.basename, self.speaker, self.raw_text = self.process_meta(
filepath
)
with open(
os.path.join(
preprocess_config["path"]["preprocessed_path"], "speakers.json"
)
) as f:
self.speaker_map = json.load(f)
def __len__(self):
return len(self.raw_text)
def __getitem__(self, idx):
basename = self.basename[idx]
speaker = self.speaker[idx]
speaker_id = self.speaker_map[speaker]
raw_text = self.raw_text[idx]
phone_path = os.path.join(
self.preprocessed_path,
"text",
"{}-text-{}.npy".format(speaker, basename),
)
text = np.load(phone_path)
spker_embed = np.load(os.path.join(
self.preprocessed_path,
"spker_embed",
"{}-spker_embed.npy".format(speaker),
)) if self.load_spker_embed else None
return (basename, speaker_id, text, raw_text, spker_embed)
def process_meta(self, filename):
with open(filename, "r", encoding="utf-8") as f:
name = []
speaker = []
text = []
for line in f.readlines():
n, s, t = line.strip("\n").split("|")
name.append(n)
speaker.append(s)
text.append(t)
return name, speaker, text
def collate_fn(self, data):
ids = [d[0] for d in data]
speakers = np.array([d[1] for d in data])
texts = [d[2] for d in data]
raw_texts = [d[3] for d in data]
text_lens = np.array([text.shape[0] for text in texts])
spker_embeds = np.concatenate(np.array([d[4] for d in data]), axis=0) \
if self.load_spker_embed else None
texts = pad_1D(texts)
return ids, raw_texts, speakers, texts, text_lens, max(text_lens), spker_embeds