forked from Dapwner/CVAE-Tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
129 lines (100 loc) · 3.96 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample
from model import Tacotron2Loss
from dataset import Dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluate(model, step, configs, mel_stats, logger=None, vocoder=None, len_losses=3):
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"val.txt", preprocess_config, model_config, train_config, sort=True, drop_last=False
)
batch_size = train_config["optimizer"]["batch_size"]
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
normalize = preprocess_config["preprocessing"]["mel"]["normalize"]
# Get loss function
Loss = Tacotron2Loss(preprocess_config, model_config, train_config).to(device)
# Evaluation
loss_sums = [0 for _ in range(len_losses)]
# inf_loss_sums = [0 for _ in range(len_losses)]
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device, mel_stats if normalize else None)
with torch.no_grad():
# Forward
output = model(*(batch[2:]))
losses = Loss(batch, output, step)
for i in range(len(losses)):
loss_sums[i] += losses[i].item() * len(batch[0])
# Inference
# output_inference = model.inference(*batch[2:5], *batch[6:9])
# Cal Loss
# inf_loss = Loss(batch, output_inference, step)
# for i in range(len(inf_losses)):
# inf_loss_sums[i] += inf_losses[i].item() * len(batch[0])
# s1=batch[2]
# s2=batch[3]
output_inference = model.module.inference(batch[2][0].unsqueeze(0), batch[3][0].unsqueeze(0), batch[6][0].unsqueeze(0), batch[5], batch[11], batch[12][0].unsqueeze(0))
# output_inference = model.module.inference(*batch[2:4], batch[6], batch[5], *batch[11:])
loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]
# inf_loss_means = [loss_sum / len(dataset) for loss_sum in inf_loss_sums]
message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Gate Loss: {:.4f}, Guided Attention Loss: {:.4f}, Encoder Loss: {:.4f} ".format(
*([step] + [l for l in loss_means])
)
# message = "Inference at Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Gate Loss: {:.4f}, Guided Attention Loss: {:.4f}, Encoder Loss: {:.4f} ".format(
# *([step] + [l for l in inf_loss_means])
# )
if logger is not None:
fig, gate_fig, wav_reconstruction, wav_prediction, wav_inference, tag = synth_one_sample(
batch,
output,
output_inference,
vocoder,
mel_stats,
model_config,
preprocess_config,
step,
)
log(logger, step, losses=loss_means)
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
log(
logger,
step=step,
fig=gate_fig,
tag="Gates/validation",
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
log(
logger,
audio=wav_inference,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_inferred".format(step, tag),
)
return message