forked from sony/DiffRoll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
48 lines (36 loc) · 1.27 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from tqdm import tqdm
import hydra
from hydra.utils import to_absolute_path
from model.unet import Unet
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.optim import Adam
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import model.unet as Model
from AudioLoader.music.amt import MAPS, MAESTRO
@hydra.main(config_path="config", config_name="infer")
def main(cfg):
infer_samples = 8
infer_set = torch.utils.data.TensorDataset(
torch.randn(
(infer_samples,
1,
*cfg.shape
)
)
)
infer_loader = DataLoader(infer_set, batch_size=infer_samples)
# Model
# model = Unet.load_from_checkpoint(to_absolute_path(cfg.checkpoint_path))
model = getattr(Model, cfg.model.name).load_from_checkpoint(to_absolute_path(cfg.checkpoint_path))
name = f"Infer-{cfg.model.name}-" \
f"MAESTRO'"
logger = TensorBoardLogger(save_dir=".", version=1, name=name)
trainer = pl.Trainer(**cfg.trainer,
logger=logger)
trainer.predict(model, infer_loader)
if __name__ == "__main__":
main()