forked from sony/DiffRoll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_spec_roll.py
62 lines (50 loc) · 2.72 KB
/
train_spec_roll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from tqdm import tqdm
import hydra
from hydra.utils import to_absolute_path
import model as Model
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.optim import Adam
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import AudioLoader.music.amt as MusicDataset
@hydra.main(config_path="config", config_name="spec_roll")
def main(cfg):
cfg.data_root = to_absolute_path(cfg.data_root)
train_set = getattr(MusicDataset, cfg.dataset.name)(**cfg.dataset.train)
val_set = getattr(MusicDataset, cfg.dataset.name)(**cfg.dataset.val)
test_set = getattr(MusicDataset, cfg.dataset.name)(**cfg.dataset.test)
train_loader = DataLoader(train_set, **cfg.dataloader.train)
val_loader = DataLoader(val_set, **cfg.dataloader.val)
test_loader = DataLoader(test_set, **cfg.dataloader.test)
# Model
model = getattr(Model, cfg.model.name)\
(**cfg.model.args, spec_args=cfg.spec.args, **cfg.task)
optimizer = Adam(model.parameters(), lr=1e-3)
checkpoint_callback = ModelCheckpoint(**cfg.modelcheckpoint)
if cfg.model.name == 'DiffRollBaseline':
name = f"{cfg.model.name}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"t={cfg.task.time_mode}-x_t={cfg.task.x_t}-k={cfg.model.args.kernel_size}-" + \
f"dia={cfg.model.args.dilation_base}-{cfg.model.args.dilation_bound}-" + \
f"{cfg.dataset.name}"
elif cfg.model.name == 'ClassifierFreeDiffRoll':
name = f"{cfg.model.name}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"beta{cfg.task.beta_end}-{cfg.task.training.mode}-" + \
f"{cfg.task.sampling.type}-w={cfg.task.sampling.w}-" + \
f"p={cfg.model.args.spec_dropout}-k={cfg.model.args.kernel_size}-" + \
f"dia={cfg.model.args.dilation_base}-{cfg.model.args.dilation_bound}-" + \
f"{cfg.dataset.name}"
else:
name = f"{cfg.model.name}-{cfg.task.sampling.type}-L{cfg.model.args.residual_layers}-C{cfg.model.args.residual_channels}-" + \
f"beta{cfg.task.beta_end}-{cfg.task.training.mode}-" + \
f"dilation{cfg.model.args.dilation_base}-{cfg.task.loss_type}-{cfg.dataset.name}"
logger = TensorBoardLogger(save_dir=".", version=1, name=name)
trainer = pl.Trainer(**cfg.trainer,
callbacks=[checkpoint_callback,],
logger=logger)
trainer.fit(model, train_loader, val_loader)
trainer.test(model, test_loader)
if __name__ == "__main__":
main()