This repository has been archived by the owner on Jul 17, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodels.py
318 lines (240 loc) · 13 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch.nn as nn
import torch
import math
import torch.nn.functional as F
from utils import Normal, float_tensor, logitexp, sample_DAG, sample_bipartite, Flatten, one_hot
from torch.distributions import Categorical
class RegressionFNP(nn.Module):
"""
Functional Neural Process for regression
"""
def __init__(self, dim_x=1, dim_y=1, dim_h=50, transf_y=None, n_layers=1, use_plus=True, num_M=100,
dim_u=1, dim_z=1, fb_z=0.):
'''
:param dim_x: Dimensionality of the input
:param dim_y: Dimensionality of the output
:param dim_h: Dimensionality of the hidden layers
:param transf_y: Transformation of the output (e.g. standardization)
:param n_layers: How many hidden layers to use
:param use_plus: Whether to use the FNP+
:param num_M: How many points exist in the training set that are not part of the reference set
:param dim_u: Dimensionality of the latents in the embedding space
:param dim_z: Dimensionality of the latents that summarize the parents
:param fb_z: How many free bits do we allow for the latent variable z
'''
super(RegressionFNP, self).__init__()
self.num_M = num_M
self.dim_x = dim_x
self.dim_y = dim_y
self.dim_h = dim_h
self.dim_u = dim_u
self.dim_z = dim_z
self.use_plus = use_plus
self.fb_z = fb_z
self.transf_y = transf_y
# normalizes the graph such that inner products correspond to averages of the parents
self.norm_graph = lambda x: x / (torch.sum(x, 1, keepdim=True) + 1e-8)
self.register_buffer('lambda_z', float_tensor(1).fill_(1e-8))
# function that assigns the edge probabilities in the graph
self.pairwise_g_logscale = nn.Parameter(float_tensor(1).fill_(math.log(math.sqrt(self.dim_u))))
self.pairwise_g = lambda x: logitexp(-.5 * torch.sum(torch.pow(x[:, self.dim_u:] - x[:, 0:self.dim_u], 2), 1,
keepdim=True) / self.pairwise_g_logscale.exp()).view(x.size(0), 1)
# transformation of the input
init = [nn.Linear(dim_x, self.dim_h), nn.ReLU()]
for i in range(n_layers - 1):
init += [nn.Linear(self.dim_h, self.dim_h), nn.ReLU()]
self.cond_trans = nn.Sequential(*init)
# p(u|x)
self.p_u = nn.Linear(self.dim_h, 2 * self.dim_u)
# q(z|x)
self.q_z = nn.Linear(self.dim_h, 2 * self.dim_z)
# for p(z|A, XR, yR)
self.trans_cond_y = nn.Linear(self.dim_y, 2 * self.dim_z)
# p(y|z) or p(y|z, u)
self.output = nn.Sequential(nn.Linear(self.dim_z if not self.use_plus else self.dim_z + self.dim_u, self.dim_h),
nn.ReLU(), nn.Linear(self.dim_h, 2 * dim_y))
def forward(self, XR, yR, XM, yM, kl_anneal=1.):
X_all = torch.cat([XR, XM], dim=0)
H_all = self.cond_trans(X_all)
# get U
pu_mean_all, pu_logscale_all = torch.split(self.p_u(H_all), self.dim_u, dim=1)
pu = Normal(pu_mean_all, pu_logscale_all)
u = pu.rsample()
# get G
G = sample_DAG(u[0:XR.size(0)], self.pairwise_g, training=self.training)
# get A
A = sample_bipartite(u[XR.size(0):], u[0:XR.size(0)], self.pairwise_g, training=self.training)
# get Z
qz_mean_all, qz_logscale_all = torch.split(self.q_z(H_all), self.dim_z, 1)
qz = Normal(qz_mean_all, qz_logscale_all)
z = qz.rsample()
cond_y_mean, cond_y_logscale = torch.split(self.trans_cond_y(yR), self.dim_z, 1)
pz_mean_all = torch.mm(self.norm_graph(torch.cat([G, A], dim=0)), cond_y_mean + qz_mean_all[0:XR.size(0)])
pz_logscale_all = torch.mm(self.norm_graph(torch.cat([G, A], dim=0)), cond_y_logscale + qz_logscale_all[0:XR.size(0)])
pz = Normal(pz_mean_all, pz_logscale_all)
pqz_all = pz.log_prob(z) - qz.log_prob(z)
# apply free bits for the latent z
if self.fb_z > 0:
log_qpz = - torch.sum(pqz_all)
if self.training:
if log_qpz.item() > self.fb_z * z.size(0) * z.size(1) * (1 + 0.05):
self.lambda_z = torch.clamp(self.lambda_z * (1 + 0.1), min=1e-8, max=1.)
elif log_qpz.item() < self.fb_z * z.size(0) * z.size(1):
self.lambda_z = torch.clamp(self.lambda_z * (1 - 0.1), min=1e-8, max=1.)
log_pqz_R = self.lambda_z * torch.sum(pqz_all[0:XR.size(0)])
log_pqz_M = self.lambda_z * torch.sum(pqz_all[XR.size(0):])
else:
log_pqz_R = torch.sum(pqz_all[0:XR.size(0)])
log_pqz_M = torch.sum(pqz_all[XR.size(0):])
final_rep = z if not self.use_plus else torch.cat([z, u], dim=1)
mean_y, logstd_y = torch.split(self.output(final_rep), 1, dim=1)
logstd_y = torch.log(0.1 + 0.9 * F.softplus(logstd_y))
mean_yR, mean_yM = mean_y[0:XR.size(0)], mean_y[XR.size(0):]
logstd_yR, logstd_yM = logstd_y[0:XR.size(0)], logstd_y[XR.size(0):]
# logp(R)
pyR = Normal(mean_yR, logstd_yR)
log_pyR = torch.sum(pyR.log_prob(yR))
# logp(M|S)
pyM = Normal(mean_yM, logstd_yM)
log_pyM = torch.sum(pyM.log_prob(yM))
obj_R = (log_pyR + log_pqz_R) / float(self.num_M)
obj_M = (log_pyM + log_pqz_M) / float(XM.size(0))
obj = obj_R + obj_M
loss = - obj
return loss
def predict(self, x_new, XR, yR, sample=True):
H_all = self.cond_trans(torch.cat([XR, x_new], 0))
# get U
pu_mean_all, pu_logscale_all = torch.split(self.p_u(H_all), self.dim_u, dim=1)
pu = Normal(pu_mean_all, pu_logscale_all)
u = pu.rsample()
A = sample_bipartite(u[XR.size(0):], u[0:XR.size(0)], self.pairwise_g, training=False)
pz_mean_all, pz_logscale_all = torch.split(self.q_z(H_all[0:XR.size(0)]), self.dim_z, 1)
cond_y_mean, cond_y_logscale = torch.split(self.trans_cond_y(yR), self.dim_z, 1)
pz_mean_all = torch.mm(self.norm_graph(A), cond_y_mean + pz_mean_all)
pz_logscale_all = torch.mm(self.norm_graph(A), cond_y_logscale + pz_logscale_all)
pz = Normal(pz_mean_all, pz_logscale_all)
z = pz.rsample()
final_rep = z if not self.use_plus else torch.cat([z, u[XR.size(0):]], dim=1)
mean_y, logstd_y = torch.split(self.output(final_rep), 1, dim=1)
logstd_y = torch.log(0.1 + 0.9 * F.softplus(logstd_y))
init_y = Normal(mean_y, logstd_y)
if sample:
y_new_i = init_y.sample()
else:
y_new_i = mean_y
y_pred = y_new_i
if self.transf_y is not None:
if torch.cuda.is_available():
y_pred = self.transf_y.inverse_transform(y_pred.cpu().data.numpy())
else:
y_pred = self.transf_y.inverse_transform(y_pred.data.numpy())
return y_pred
class ClassificationFNP(nn.Module):
"""
Functional Neural Process for classification with the LeNet-5 architecture
"""
def __init__(self, dim_x=(1, 28, 28), dim_y=10, use_plus=True, num_M=1, dim_u=32, dim_z=64, fb_z=1.0):
'''
:param dim_x: Dimensionality of the input
:param dim_y: Dimensionality of the output
:param use_plus: Whether to use the FNP+
:param num_M: How many points exist in the training set that are not part of the reference set
:param dim_u: Dimensionality of the latents in the embedding space
:param dim_z: Dimensionality of the latents that summarize the parents
:param fb_z: How many free bits do we allow for the latent variable z
'''
super(ClassificationFNP, self).__init__()
self.num_M = num_M
self.dim_x = dim_x
self.dim_y = dim_y
self.dim_u = dim_u
self.dim_z = dim_z
self.use_plus = use_plus
self.fb_z = fb_z
# normalizes the graph such that inner products correspond to averages of the parents
self.norm_graph = lambda x: x / (torch.sum(x, 1, keepdim=True) + 1e-8)
self.register_buffer('lambda_z', float_tensor(1).fill_(1e-8))
# function that assigns the edge probabilities in the graph
self.pairwise_g_logscale = nn.Parameter(float_tensor(1).fill_(math.log(math.sqrt(self.dim_u))))
self.pairwise_g = lambda x: logitexp(-.5 * torch.sum(torch.pow(x[:, self.dim_u:] - x[:, 0:self.dim_u], 2), 1,
keepdim=True) / self.pairwise_g_logscale.exp()).view(x.size(0), 1)
# transformation of the input
self.cond_trans = nn.Sequential(nn.Conv2d(self.dim_x[0], 20, 5), nn.ReLU(), nn.MaxPool2d(2),
nn.Conv2d(20, 50, 5), nn.ReLU(), nn.MaxPool2d(2), Flatten(),
nn.Linear(800, 500))
# p(u|x)
self.p_u = nn.Sequential(nn.ReLU(), nn.Linear(500, 2 * self.dim_u))
# q(z|x)
self.q_z = nn.Sequential(nn.ReLU(), nn.Linear(500, 2 * self.dim_z))
# for p(z|A, XR, yR)
self.trans_cond_y = nn.Linear(self.dim_y, 2 * self.dim_z)
# p(y|z) or p(y|z, u)
self.output = nn.Sequential(nn.ReLU(),
nn.Linear(self.dim_z if not self.use_plus else self.dim_z + self.dim_u, dim_y))
def forward(self, XM, yM, XR, yR, kl_anneal=1.):
X_all = torch.cat([XR, XM], dim=0)
H_all = self.cond_trans(X_all)
# get U
pu_mean_all, pu_logscale_all = torch.split(self.p_u(H_all), self.dim_u, dim=1)
pu = Normal(pu_mean_all, pu_logscale_all)
u = pu.rsample()
# get G
G = sample_DAG(u[0:XR.size(0)], self.pairwise_g, training=self.training)
# get A
A = sample_bipartite(u[XR.size(0):], u[0:XR.size(0)], self.pairwise_g, training=self.training)
# get Z
qz_mean_all, qz_logscale_all = torch.split(self.q_z(H_all), self.dim_z, 1)
qz = Normal(qz_mean_all, qz_logscale_all)
z = qz.rsample()
cond_y_mean, cond_y_logscale = torch.split(self.trans_cond_y(one_hot(yR, n_classes=self.dim_y)), self.dim_z, 1)
pz_mean_all = torch.mm(self.norm_graph(torch.cat([G, A], dim=0)), cond_y_mean + qz_mean_all[0:XR.size(0)])
pz_logscale_all = torch.mm(self.norm_graph(torch.cat([G, A], dim=0)), cond_y_logscale + qz_logscale_all[0:XR.size(0)])
pz = Normal(pz_mean_all, pz_logscale_all)
pqz_all = pz.log_prob(z) - qz.log_prob(z)
# apply free bits for the latent z
if self.fb_z > 0:
log_qpz = - torch.sum(pqz_all)
if self.training:
if log_qpz.item() > self.fb_z * z.size(0) * z.size(1) * (1 + 0.05):
self.lambda_z = torch.clamp(self.lambda_z * (1 + 0.1), min=1e-8, max=1.)
elif log_qpz.item() < self.fb_z * z.size(0) * z.size(1):
self.lambda_z = torch.clamp(self.lambda_z * (1 - 0.1), min=1e-8, max=1.)
log_pqz_R = self.lambda_z * torch.sum(pqz_all[0:XR.size(0)])
log_pqz_M = self.lambda_z * torch.sum(pqz_all[XR.size(0):])
else:
log_pqz_R = torch.sum(pqz_all[0:XR.size(0)])
log_pqz_M = torch.sum(pqz_all[XR.size(0):])
final_rep = z if not self.use_plus else torch.cat([z, u], dim=1)
logits_all = self.output(final_rep)
pyR = Categorical(logits=logits_all[0:XR.size(0)])
log_pyR = torch.sum(pyR.log_prob(yR))
pyM = Categorical(logits=logits_all[XR.size(0):])
log_pyM = torch.sum(pyM.log_prob(yM))
obj_R = (log_pyR + log_pqz_R) / float(self.num_M)
obj_M = (log_pyM + log_pqz_M) / float(XM.size(0))
obj = obj_R + obj_M
loss = - obj
return loss
def get_pred_logits(self, x_new, XR, yR, n_samples=100):
H_all = self.cond_trans(torch.cat([XR, x_new], 0))
# get U
pu_mean_all, pu_logscale_all = torch.split(self.p_u(H_all), self.dim_u, dim=1)
pu = Normal(pu_mean_all, pu_logscale_all)
qz_mean_R, qz_logscale_R = torch.split(self.q_z(H_all[0:XR.size(0)]), self.dim_z, 1)
logits = float_tensor(x_new.size(0), self.dim_y, n_samples)
for i in range(n_samples):
u = pu.rsample()
A = sample_bipartite(u[XR.size(0):], u[0:XR.size(0)], self.pairwise_g, training=False)
cond_y_mean, cond_y_logscale = torch.split(self.trans_cond_y(one_hot(yR, n_classes=self.dim_y)), self.dim_z, 1)
pz_mean_M = torch.mm(self.norm_graph(A), cond_y_mean + qz_mean_R)
pz_logscale_M = torch.mm(self.norm_graph(A), cond_y_logscale + qz_logscale_R)
pz = Normal(pz_mean_M, pz_logscale_M)
z = pz.rsample()
final_rep = z if not self.use_plus else torch.cat([z, u[XR.size(0):]], dim=1)
logits[:, :, i] = F.log_softmax(self.output(final_rep), 1)
logits = torch.logsumexp(logits, 2) - math.log(n_samples)
return logits
def predict(self, x_new, XR, yR, n_samples=100):
logits = self.get_pred_logits(x_new, XR, yR, n_samples=n_samples)
return torch.argmax(logits, 1)