-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchat.py
60 lines (45 loc) · 1.9 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import openai
import json
from typing import List, Dict
import random
openai.api_key = "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"
def response(message: List[Dict]):
# print(json.dumps(message, indent=4))
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=message,
temperature=1,
max_tokens=2
)
print(completion)
def select_random(data: List[Dict], n: int, completion: str) -> List[Dict]:
filtered = [d for d in data if d['completion'] == completion]
return random.sample(filtered, n)
def few_shot(data: List[Dict]) -> List[Dict]:
messages = [{
"role": "system",
"content": "You are a node attack prediction system. The first number is time, followed by packet volumes in 10 minutes and the average 30-minute, 1-hour, 2-hour, and 4-hour packet volumes for node 0, node 1, node 2, node 3 and node 4. The last number is the node to be predicted."
}]
for d in data:
messages.append({"role": "user", "content": d["prompt"]})
messages.append({"role": "assistant", "content": d["completion"]})
return messages
def load_jsonl(filename: str) -> List[Dict]:
data = []
with open(filename, 'r') as f:
for line in f:
data.append(json.loads(line))
return data
def test_message(data: List[Dict], n: int, messages: List[Dict])-> List[Dict]:
random_test = random.sample(data, n)
for line in random_test:
print(line)
messages.append({"role" : "user", "content" : line['prompt']})
return messages
if __name__ == '__main__':
filename = '30/train_1.4_8h_0.5_5_prepared_2.jsonl'
data = load_jsonl(filename)
selected = select_random(data, 5, '0') + select_random(data, 5, '1')
messages = few_shot(selected)
messages = test_message(data, 2, messages)
response(messages)