-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
334 lines (246 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import numpy as np
import pandas as pd
import torch, csv
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import T5Tokenizer, T5ForConditionalGeneration
from torch import cuda
import gc
import warnings
import loader
import BearDiscriminator
import torch.autograd as autograd
class CustomDataset(Dataset):
def __init__(self, dataframe, tokenizer, source_len, summ_len):
self.tokenizer = tokenizer
self.data = dataframe
self.source_len = source_len
self.summ_len = summ_len
self.buggy = self.data.buggy
self.patch = self.data.patch
def __len__(self):
return len(self.patch)
def __getitem__(self, index):
buggy = str(self.buggy[index])
buggy = ' '.join(buggy.split())
patch = str(self.patch[index])
patch = ' '.join(patch.split())
source = self.tokenizer.batch_encode_plus([buggy], max_length= self.source_len,pad_to_max_length=True,return_tensors='pt')
target = self.tokenizer.batch_encode_plus([patch], max_length= self.summ_len, pad_to_max_length=True,return_tensors='pt')
source_ids = source['input_ids'].squeeze()
source_mask = source['attention_mask'].squeeze()
target_ids = target['input_ids'].squeeze()
target_mask = target['attention_mask'].squeeze()
return {
'source_ids': source_ids.to(dtype=torch.long),
'source_mask': source_mask.to(dtype=torch.long),
'target_ids': target_ids.to(dtype=torch.long),
'target_ids_y': target_ids.to(dtype=torch.long)
}
def semantic_training(generator, gen_opt, gen_tokenizer, adv_loader, device,epoch):
generator.train()
for _,data in enumerate(adv_loader, 0):
y = data['target_ids'].to(device, dtype = torch.long)
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone().detach()
lm_labels[y[:, 1:] == gen_tokenizer.pad_token_id] = -100
ids = data['source_ids'].to(device, dtype = torch.long)
mask = data['source_mask'].to(device, dtype = torch.long)
bugid = data['bugid'].to(device, dtype = torch.long)
print(f'bugid: {bugid}')
bugcode = ids[0]
end_index=getEndIndex(bugcode,32108) #2625 is the index for 'context',32108 is the index of 'context:'
bugcode = bugcode[3:end_index-1] #your index may be different!
buggy = [gen_tokenizer.decode(bugcode, skip_special_tokens=True, clean_up_tokenization_spaces=True)]
outputs = generator(input_ids = ids, attention_mask = mask, decoder_input_ids=y_ids, labels=lm_labels)
loss = outputs[0]
print(f'original loss: {loss}')
lm_logits = outputs[1]
output = F.log_softmax(lm_logits, -1)
preds_seq = output.max(2)[1]
g = preds_seq[0]
end_index=getEndIndex(g,1)
g = g[:end_index]
preds = [gen_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)]
predstr = preds[0]
print(f'predstr: {predstr}')
# identity discriminator
identity_reward = identity_discriminator(buggy[0], predstr)
reward = autograd.Variable(torch.FloatTensor([1.0]))
if 'same' in identity_reward:
reward = autograd.Variable(torch.FloatTensor([1.4]))
else:
reward = validate_by_compiler(bugid, predstr)
print(f'reward: {reward}')
#combine cross entropy loss and compiler reward loss
reward = reward.to(device)
loss = outputs[0]*reward
print(f'semantic loss: {loss}')
gen_opt.zero_grad()
loss.backward()
gen_opt.step()
recordData(epoch, bugid.item(), outputs[0].item(), reward.item(), predstr )
def recordData(epoch, bugid, crossEntropLoss, reward, preds):
with open('./logs.csv', 'a') as csvfile:
filewriter = csv.writer(csvfile, delimiter='\t',quotechar='"',quoting=csv.QUOTE_MINIMAL)
filewriter.writerow([epoch, bugid, crossEntropLoss, reward, preds])
def getEndIndex(g,index):
end_index=0
for i in g:
end_index+=1
# 1 for </s>
if i == index:
break
return end_index
def identity_discriminator(buggy, predstr):
print(f'buggy: {buggy}')
print(f'predstr: {predstr}')
if buggy in predstr and predstr in buggy:
return 'same'
else:
return 'different'
def validate_by_compiler(bugid, preds):
R = 0.2
result = BearDiscriminator.getResults(bugid.item(), preds, rootPath)
print(f'result: {result}')
if 'failcompile' in result:
rewardValue=1+R
elif 'successcompile' in result:
rewardValue=1-R
elif 'passHumanTest' in result:
rewardValue=1-R*2
elif 'passAllTest' in result:
rewardValue=1-R*3
else:
rewardValue=1
return autograd.Variable(torch.FloatTensor([rewardValue]))
def syntrain(epoch, tokenizer, model, device, loader, optimizer):
model.train()
countInt = 0
for _,data in enumerate(loader, 0):
y = data['target_ids'].to(device, dtype = torch.long)
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone().detach()
lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100
ids = data['source_ids'].to(device, dtype = torch.long)
mask = data['source_mask'].to(device, dtype = torch.long)
outputs = model(input_ids = ids, attention_mask = mask, decoder_input_ids=y_ids, labels=lm_labels)
loss = outputs[0]
if _%1000 ==0:
print(f'Syntatic Train Epoch: {epoch}, Loss: {loss.item()}')
# we also save the model here in case of an accident during training
if _%10000 ==0:
model.save_pretrained(SAVE_MODEL)
tokenizer.save_pretrained(SAVE_MODEL)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def valid( tokenizer, model, device, loader, optimizer):
model.eval()
total_loss = 0
total_nb=0
with torch.no_grad():
for _,data in enumerate(loader, 0):
y = data['target_ids'].to(device, dtype = torch.long)
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone().detach()
lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100
ids = data['source_ids'].to(device, dtype = torch.long)
mask = data['source_mask'].to(device, dtype = torch.long)
outputs = model(input_ids = ids, attention_mask = mask, decoder_input_ids=y_ids, labels=lm_labels)
loss = outputs[0]
total_nb += 1
total_loss += loss.item()
print(f'Total Loss: {total_loss}/{total_nb}')
def getGeneratorDataLoader(filepatch,tokenizer,batchsize):
df = pd.read_csv(filepatch,encoding='latin-1',delimiter='\t')
print(df.head(1))
df = df[['bugid','buggy','patch']]
params = {
'batch_size': batchsize,
'shuffle': True,
'num_workers': 0
}
dataset=df.sample(frac=1.0, random_state = SEED).reset_index(drop=True)
target_set = loader.GeneratorDataset(dataset, tokenizer, MAX_LEN, PATCH_LEN)
target_loader = DataLoader(target_set, **params)
return target_loader
def syntactic(epoch,syn_train_data_path):
# Set random seeds and deterministic pytorch for reproducibility
torch.manual_seed(SEED) # pytorch random seed
np.random.seed(SEED) # numpy random seed
torch.backends.cudnn.deterministic = True
torch.cuda.empty_cache()
# Process data
df = pd.read_csv(syn_train_data_path,encoding='latin-1',delimiter='\t', header=0, error_bad_lines=False)
print(df.head())
df = df[['bugid','buggy','patch']]
print(df.head())
# tokenzier for encoding the text
if epoch == 0 and 'CoCoNut' in syn_train_data_path:
model = T5ForConditionalGeneration.from_pretrained('t5-base', output_hidden_states=True)
tokenizer = T5Tokenizer.from_pretrained('t5-base',truncation=True)
tokenizer.add_tokens(['{', '}','<','^','>=','<=','==','buggy:','context:'])
else:
model = T5ForConditionalGeneration.from_pretrained(SAVE_MODEL, output_hidden_states=True)
tokenizer = T5Tokenizer.from_pretrained(SAVE_MODEL,truncation=True)
device = 'cuda' if cuda.is_available() else 'cpu'
model = model.to(device)
# Creation of Dataset and Dataloader
train_dataset=df.sample(frac=1.0, random_state = SEED).reset_index(drop=True)
print("TRAIN Dataset: {}".format(train_dataset.shape))
# Creating the Training and Validation dataset for further creation of Dataloader
training_set = CustomDataset(train_dataset, tokenizer, MAX_LEN, PATCH_LEN)
# Defining the parameters for creation of dataloaders
train_params = {
'batch_size': TRAIN_BATCH_SIZE,
'shuffle': True,
'num_workers': 2
}
# Creation of Dataloaders for testing and validation.
training_loader = DataLoader(training_set, **train_params)
# Defining the optimizer that will be used to tune the weights of the network in the training session.
optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
syntrain(epoch, tokenizer, model, device, training_loader, optimizer)
model.save_pretrained(SAVE_MODEL)
tokenizer.save_pretrained(SAVE_MODEL)
print(f'Syntatic Train Model Saved: {epoch}')
def semantic(epoch):
gen = T5ForConditionalGeneration.from_pretrained(SAVE_MODEL, output_hidden_states=True)
gen_tokenizer = T5Tokenizer.from_pretrained(SAVE_MODEL,truncation=True)
gen = gen.to(device)
gen_optimizer = torch.optim.Adam(params = gen.parameters(), lr=LEARNING_RATE)
data_loader=getGeneratorDataLoader(semantic_train_data_path,gen_tokenizer,1)
print('\n---Semantic Training-----\nEPOCH %d\n--------' % (epoch+1))
# train model
semantic_training(gen, gen_optimizer, gen_tokenizer, data_loader, device, epoch)
# save trained model
gen.save_pretrained(SAVE_MODEL)
gen_tokenizer.save_pretrained(SAVE_MODEL)
print(f'Sementic Train Model Saved: {epoch}')
if __name__ == '__main__':
warnings.filterwarnings('ignore')
device = 'cuda' if cuda.is_available() else 'cpu'
print(torch.__version__)
gc.collect()
torch.cuda.empty_cache()
# This is a small dataset to try
syn_train_data_path_1= './data/CoCoNut.csv'
syn_train_data_path_2= './data/MegaDiff-CodRep.csv'
semantic_train_data_path= 'Bears_Training/BearsTraining.csv'
SAVE_MODEL='./model/RewardRepair'
rootPath='/your/path/'
TRAIN_BATCH_SIZE = 20
TRAIN_EPOCHS = 15 # number of epochs to train
LEARNING_RATE = 1e-4 # learning rate
SEED = 42 # random seed (default: 42)
MAX_LEN = 512
PATCH_LEN = 100
#We train the CoCoNut dataset
for epoch in range(0,TRAIN_EPOCHS):
syntactic(epoch,syn_train_data_path_1)
#we train the syntactic training and semantic training
for epoch in range(0,TRAIN_EPOCHS):
syntactic(epoch,syn_train_data_path_2)
if (epoch>5 and epoch % 3 == 0) or epoch == TRAIN_EPOCHS-1:
semantic(epoch)