-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path5_test.py
145 lines (102 loc) · 4.53 KB
/
5_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import pandas as pd
import torch,sys
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
import warnings
from torch import cuda
from transformers import T5Tokenizer, T5ForConditionalGeneration
import loader
import torch.autograd as autograd
import csv
import os, gc
import sys, subprocess,fnmatch, shutil, csv,re, datetime
def getBugName(bugid):
print(bugid)
bugid=str(bugid).replace(' ','')
buginfo=''
startNo=''
removeNo=''
filepath=''
with open(TEST_PATH) as testfile:
lines = testfile.readlines()
for l in lines:
bid=l.split('\t')[0]
bid=bid.replace(' ','')
if bid in bugid and bugid in bid:
buginfo=l.split('\t')[3]
buginfo=buginfo.replace('\n','').replace('\t','').replace('\r','')
startNo=l.split('\t')[4]
removeNo=l.split('\t')[5]
infos = l.split('\t')
if len(infos) > 6:
filepath=l.split('\t')[6]
filepath=filepath.replace('\n','').replace('\t','').replace('\r','')
else:
filepath=''
break
return buginfo,startNo,removeNo,filepath
def test( model, tokenizer, device, loader,epoch):
return_sequences = 50
model.eval()
identicalset=[]
with torch.no_grad():
for _,data in enumerate(loader, 0):
if _>-1:
gc.collect()
torch.cuda.empty_cache()
y = data['target_ids'].to(device, dtype = torch.long)
ids = data['source_ids'].to(device, dtype = torch.long)
mask = data['source_mask'].to(device, dtype = torch.long)
bugid = data['bugid'].to(device, dtype = torch.long)
print("====bugid===",bugid.item())
generated_ids = model.generate(
input_ids = ids,
attention_mask = mask,
max_length=64,
num_beams=return_sequences,
repetition_penalty=3.0,
# length_penalty=0.5,
early_stopping = False,
num_return_sequences=return_sequences,
num_beam_groups = 1
)
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True)for t in y]
target = target[0]
bugname,startNo,removeNo,filepath = getBugName(bugid.item())
with open('./raw_results.csv', 'a') as csvfile:
filewriter = csv.writer(csvfile, delimiter='\t',escapechar=' ',quoting=csv.QUOTE_NONE)
for i in range(0,return_sequences):
filewriter.writerow([bugname, startNo,removeNo,filepath,preds[i],target])
def getGeneratorDataLoader(filepatch,tokenizer,batchsize):
df = pd.read_csv(filepatch,encoding='latin-1',delimiter='\t')
print(df.head(1))
df = df[['bugid','patch','buggy']]
params = {
'batch_size': batchsize,
'shuffle': True,
'num_workers': 0
}
dataset=df.sample(frac=1.0, random_state = SEED).reset_index(drop=True)
target_set = loader.GeneratorDataset(dataset, tokenizer, MAX_LEN, PATCH_LEN)
target_loader = DataLoader(target_set, **params)
return target_loader
def run_test(epoch):
for i in range(0,10):
gen = T5ForConditionalGeneration.from_pretrained('./model_SelfAPR_ALL/SelfAPR'+str(i+1),output_hidden_states=True)
gen_tokenizer = T5Tokenizer.from_pretrained('./model_SelfAPR_ALL/SelfAPR'+str(i+1),truncation=True)
gen_tokenizer.add_tokens(['[PATCH]','[BUG]','{', '}','<','^','<=','>=','==','!=','<<','>>','[CE]','[FE]','[CONTEXT]','[BUGGY]','[CLASS]','[METHOD]','[RETURN_TYPE]','[VARIABLES]','[Delete]'])
gen = gen.to(device)
test_loader=getGeneratorDataLoader(TEST_PATH,gen_tokenizer,1)
test(gen, gen_tokenizer, device, test_loader, epoch+1)
if __name__ == '__main__':
warnings.filterwarnings('ignore')
SEED=42
LEARNING_RATE = 1e-4
VALID_BATCH_SIZE = 1
MAX_LEN = 384
PATCH_LEN = 76
device = 'cuda' if cuda.is_available() else 'cpu'
TEST_PATH='./dataset/test.csv'
run_test(0)