Skip to content

Latest commit

 

History

History
58 lines (49 loc) · 1.76 KB

README.md

File metadata and controls

58 lines (49 loc) · 1.76 KB

VPI sample for video stabilization

Environment

  • Jetson Xavier or XavierNX
  • JetPack 4.4 Product Release (GA)
  • VPI-0.3

Build

$ cd /home/nvidia/
$ mkdir opencv4.3.0
$ wget https://raw.githubusercontent.com/AastaNV/JEP/master/script/install_opencv4.3.0_Jetson.sh
$ sudo chmod +x install_opencv4.3.0_Jetson.sh
$ ./install_opencv4.3.0_Jetson.sh opencv4.3.0
$ git clone https://github.com/AastaNV/00-video_stabilization.git
$ cd 00-video_stabilization
$ cmake .
$ make
$ ./vpi_sample_stabilization

Pipeline

Step 1: mount image from cv::Mat into VPIImage

  • Use S16 gray scale image format.

Step 2: Harris key-point detector

  • Use CUDA to allow larger minNMSDistance (PVA only support minNMSDistance=8)
  • Apply algorithm on S16 image format

Step 3: wrap VPI_ARRAY_TYPE_KEYPOINT into VPI_ARRAY_TYPE_KLT_TRACKED_BOUNDING_BOX

  • Wrap bbox by making a fake bounding box center with keypoint with w=h=32

Step 4: KLT tracker

  • Use CUDA
  • Apply algorithm on S16 image format

Step 5: calculate transform matrix

  • Use global translation as approximate - [TODO] User should add foreground removal and IIR filter matrix on their own
  • Matrix need to apply on the center of the image. Transform will look like this:
         | 1  0  2/w |     | 1  0  mx |     | 1  0  -2/w |
     T = | 0  1  2/h |  *  | 0  1  my |  *  | 0  1  -2/h |
         | 0  0   1  |     | 0  0   1 |     | 0  0    1  |
  • [TODO] User should add foreground removal and IIR filter on their own.

Step 6: warping

  • Use PVA
  • Apply algorithm on NV12 image format
  • Flow should look like this

(OpenCV BGR) -> ImageFormatConverter -> (VPI NV12) -> PerspectiveImageWarp -> (VPI NV12) -> ImageFormatConverter -> (OpenCV BGR)