-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebapp.py
58 lines (40 loc) · 1.97 KB
/
webapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from langchain.llms import CTransformers
import streamlit as st
# from langchain_community import CTransformers
from langchain_community.llms import CTransformers
# creating a function to get a response from LLama 2 model
def get_response(input_text, no_of_words, blog_style):
# llm = CTransformers(model="model\llama-2-7b-chat.ggmlv3.q8_0.bin", model_type="llama")
# calling LLama model which we downloaded from Hugging Face using CTransformers
llm = CTransformers(model="model\llama-2-7b-chat.ggmlv3.q8_0.bin",
model_type="llama",
config={"max_new_tokens": 256,"temperature": 0.9})
# creating a prompt template
template = '''
Write a blog about {blog_style} on {input_text} with {no_of_words} words.
'''
# creating a prompt template
prompt_template = PromptTemplate(input_variables=["blog_style", "input_text", "no_of_words"],
template=template)
# generate a response from LLama model
response=llm(prompt_template.format(blog_style=blog_style,input_text=input_text,no_of_words=no_of_words))
print(response)
return response
# setting the Streamlit or Flask API
st.set_page_config(page_title="Generate Blogs with LLama 2",
page_icon=":rocket:",
layout="centered",
initial_sidebar_state="collapsed")
st.header("Generate Blogs with LLama 2 :rocket:")
input_text = st.text_area("Enter the blog topic")
## creating to more columns for additional 2 fields
col1, col2 = st.columns([5,5])
with col1:
no_of_words = st.text_input("No of words")
with col2:
blog_style = st.selectbox("Writing the blog for",
("Research", "Creative","Technical"), index=0)
submit = st.button("Generate")
## final response from the model
if submit:
st.write(get_response(input_text, no_of_words, blog_style))