-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixAlgebra.cpp
234 lines (207 loc) · 5.78 KB
/
MatrixAlgebra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//Author: AndreasKel
//---------------------------------------------------------------------------------------------
//license: MIT
//file name: MatrixAlgebra.cpp
//language: C++
//environment: Mingw-w64
//functionality: matrix creation and algebra computation
//==============================================================================================
#include "MatrixAlgebra.h"
cMatrixAlgebra::cMatrixAlgebra(short rowSize, short colSize, float** initial){
_rowSize = rowSize;
_colSize = colSize;
_matrix.resize(rowSize);
for (int i = 0; i < _matrix.size(); i++)
{
_matrix[i].resize(colSize, 0);
}
for (int i = 0; i < rowSize; i++)
{
for (int j = 0; j < colSize; j++){
_matrix[i][j] = initial[i][j];
}
}
}
cMatrixAlgebra::cMatrixAlgebra(short rowSize, short colSize, float initial){
_rowSize = rowSize;
_colSize = colSize;
_matrix.resize(rowSize);
for (int i = 0; i < _matrix.size(); i++)
{
_matrix[i].resize(colSize, initial);
}
};
cMatrixAlgebra::cMatrixAlgebra(const vector<vector<float> > &initial){
_rowSize = initial.size();
_colSize = initial[0].size();
_matrix = initial;
};
cMatrixAlgebra::cMatrixAlgebra(const cMatrixAlgebra &mat){
_rowSize = mat._rowSize;
_colSize = mat._colSize;
_matrix = mat._matrix;
};
cMatrixAlgebra::cMatrixAlgebra(){
}
cMatrixAlgebra::~cMatrixAlgebra(){
}
short cMatrixAlgebra::getRows() const
{
return this->_rowSize;
}
short cMatrixAlgebra::getCols() const
{
return this->_colSize;
}
cMatrixAlgebra cMatrixAlgebra::operator+(const cMatrixAlgebra &tempMatrix){
cMatrixAlgebra sum(_colSize, _rowSize, 0.0f);
for (int i = 0; i < _rowSize; i++)
{
for (int j = 0; j < _colSize; j++)
{
sum._matrix[i][j] = this->_matrix[i][j] + tempMatrix._matrix[i][j];
}
}
return sum;
};
cMatrixAlgebra cMatrixAlgebra::operator-(const cMatrixAlgebra &tempMatrix){
cMatrixAlgebra sum(_colSize, _rowSize, 0.0f);
for (int i = 0; i < _rowSize; i++)
{
for (int j = 0; j < _colSize; j++)
{
sum._matrix[i][j] = this->_matrix[i][j] - tempMatrix._matrix[i][j];
}
}
return sum;
}
//Multiplies two matrices.
cMatrixAlgebra cMatrixAlgebra::operator*(const cMatrixAlgebra &tempMatrix)
{
int i, j, k;
cMatrixAlgebra mult(_rowSize, tempMatrix.getCols(), 0.0f);
// Multiplying matrix firstMatrix and secondMatrix and storing in array mult.
for (i = 0; i < _rowSize; ++i)
{
for (j = 0; j < tempMatrix.getRows(); ++j)
{
for (k = 0; k < _colSize; ++k)
{
mult._matrix[i][j] += (*this)._matrix[i][k] * tempMatrix._matrix[k][j];
}
}
}
return mult;
}
//Returns the Transpose of the matrix
cMatrixAlgebra cMatrixAlgebra::Transpose()
{
int w = _rowSize;
int h = _colSize;
cMatrixAlgebra result(h, w, 0.0f);
for (int i = 0; i < w; i++)
{
for (int j = 0; j < h; j++)
{
result._matrix[j, i] = _matrix[i, j];
}
}
return result;
}
//Returns the determinant of the matrix. Must be a square matrix.
float cMatrixAlgebra::Determinant(float size)
{
cMatrixAlgebra b(size, size, 0.0f);
float s = 1, det = 0;
int i, j, m, n, c;
if (size == 1)
{
return (_matrix[0][0]);
}
else
{
det = 0;
for (c = 0; c < size; c++)
{
m = 0;
n = 0;
for (i = 0; i < size; i++)
{
for (j = 0; j < size; j++)
{
b._matrix[i][j] = 0;
if (i != 0 && j != c)
{
b._matrix[m, n] = this->_matrix[i, j];
if (n < (size - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
det = det + s * (this->_matrix[0][c] * b.Determinant(size - 1));
s = -1 * s;
}
}
return (det);
}
//Returns the inverse of the matrix. Must be a square matrix.
cMatrixAlgebra cMatrixAlgebra::Inverse(int size)
{
cMatrixAlgebra b(size, size, 0.0f);
cMatrixAlgebra fac(size, size, 0.0f);
cMatrixAlgebra facT(size, size, 0.0f);
cMatrixAlgebra inverse(size, size, 0.0f);
float det;
int p, q, m, n, i, j;
for (q = 0; q < size; q++)
{
for (p = 0; p < size; p++)
{
m = 0;
n = 0;
for (i = 0; i < size; i++)
{
for (j = 0; j < size; j++)
{
if (i != q && j != p)
{
b._matrix[m, n] = this->_matrix[i, j];
if (n < (size - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
fac._matrix[q][p] = (float)pow(-1, q + p) * b.Determinant(size - 1);
}
}
det = this->Determinant(size);
facT = fac.Transpose();
for (i = 0; i < size; i++)
{
for (j = 0; j < size; j++)
{
inverse._matrix[i][j] = facT._matrix[i][j] / det;
}
}
return inverse;
}
//Returns an identity square matrix which all the elements of principal diagonals are one, and all other elements are zeros.
cMatrixAlgebra cMatrixAlgebra::Identity(int size)
{
cMatrixAlgebra result(size, size, 0.0f);
for (int i = 0; i < size; i++)
{
result._matrix[i][i] = 1;
}
return result;
}