-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
662 lines (505 loc) · 23.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
from fastapi import FastAPI
from pydantic import BaseModel, Field
from fastapi.middleware.cors import CORSMiddleware
from openai import OpenAI
import time
import requests
import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.embeddings import HuggingFaceEmbeddings
from typing import List
from sentence_transformers import SentenceTransformer
import logging
import json
from data import example_doc_feedback as ex
from data import parser_output as parser
from data import example_and_tool_db as db
import ast
import re
import pickle
from FlagEmbedding import FlagReranker
import tiktoken
import random
encoding = tiktoken.get_encoding("cl100k_base")
encoding = tiktoken.encoding_for_model("gpt-4-1106-preview")
ASSISTANT_ID = 'asst_VSDOllgBf0GkI50zVnBJdJ5N'
# RETRIEVER_ID = 'asst_xMGkLqbVNc1EYAg14AFxpEdr'
NGROK_LINK = 'https://adb1-34-32-253-133.ngrok.io'
# OPENAPIKEY = 'XXXXXXXXXXXXXXXXXXXXX'
client = OpenAI()
# thread = client.beta.threads.create()
# ret_thread = client.beta.threads.create()
RETRIEVER_INITIALIZED = False
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=False)
class QueryHandler(logging.Handler):
def __init__(self):
super().__init__()
self.generated_queries = ""
def emit(self, record):
if record.levelname == 'INFO' and 'Generated queries' in record.msg:
# Extract the text between '[' and ']'
match = re.search(r'\[([^]]+)\]', record.msg)
if match:
queries = match.group(1)
self.generated_queries = ""
try:
queries_list = ast.literal_eval(queries)
for query in queries_list:
self.generated_queries += query + '\n'
except (ValueError, SyntaxError) as e:
# Handle the exception as needed
print(f"Error evaluating queries: {e}")
logging.basicConfig(filename='data/app.log', filemode='w', level=logging.WARNING)
logger = logging.getLogger("langchain.retrievers.multi_query")
logger.setLevel(logging.INFO)
# Add the custom handler to the logger
query_handler = QueryHandler()
logger.addHandler(query_handler)
def remove_document(api_name):
with open('data/doc.pkl', 'rb') as file:
doc = pickle.load(file)
with open('data/meta.pkl', 'rb') as file:
meta = pickle.load(file)
with open('data/id.pkl', 'rb') as file:
id = pickle.load(file)
indx = ''
num = -1
for i, val in enumerate(meta):
if val['API'] == api_name:
indx = id[i]
num = i
break
collection_hf.delete(
ids=[indx]
)
doc.pop(num)
meta.pop(num)
id.pop(num)
with open('data/doc.pkl', 'wb') as file:
pickle.dump(doc, file)
with open('data/meta.pkl', 'wb') as file:
pickle.dump(meta, file)
with open('data/id.pkl', 'wb') as file:
pickle.dump(id, file)
print(f'API {api_name} removed at id {indx} {collection_hf.count()} remains')
def update_document(api_name, document):
with open('data/doc.pkl', 'rb') as file:
doc = pickle.load(file)
with open('data/meta.pkl', 'rb') as file:
meta = pickle.load(file)
with open('data/id.pkl', 'rb') as file:
id = pickle.load(file)
indx = ''
num = -1
for i, val in enumerate(meta):
if val['API'] == api_name:
indx = id[i]
num = i
break
collection_hf.upsert(
documents=[document],
ids = [indx],
metadatas=[{'API': api_name}]
)
doc[num] = document
with open('data/doc.pkl', 'wb') as file:
pickle.dump(doc, file)
with open('data/meta.pkl', 'wb') as file:
pickle.dump(meta, file)
with open('data/id.pkl', 'wb') as file:
pickle.dump(id, file)
print(f'API {api_name} updated at id {indx} {collection_hf.count()} remains')
def add_document(api_name, document):
with open('data/doc.pkl', 'rb') as file:
doc = pickle.load(file)
with open('data/meta.pkl', 'rb') as file:
meta = pickle.load(file)
with open('data/id.pkl', 'rb') as file:
id = pickle.load(file)
add_id = f'ID{collection_hf.count() + 1}'
collection_hf.add(
documents=[document],
ids = [add_id],
metadatas=[{'API': api_name}]
)
doc.append(document)
id.append(add_id)
meta.append({'API': api_name})
with open('data/doc.pkl', 'wb') as file:
pickle.dump(doc, file)
with open('data/meta.pkl', 'wb') as file:
pickle.dump(meta, file)
with open('data/id.pkl', 'wb') as file:
pickle.dump(id, file)
print(f'API {api_name} added at id {add_id} {collection_hf.count()} remains')
def generate_document(api_doc_path: str, api_example_path: str, api_name: str):
with open(api_doc_path, 'r') as f:
data = json.load(f)
doc_format = ''
for i in data['ToolList']:
if i['API Name'] == api_name:
doc_format += f"##API Name: {i['API Name']} \n"
doc_format += f"###Description: {i['API Description']}\n\n"
doc_format += f'###Arguments: \n\n'
for j in i['API arguments']:
doc_format += f"API Argument: {j['Argument Name']}\n"
doc_format += f"Argument Description: {j['Argument Description']}\n"
doc_format += f"Return Type: {j['Argument Type']}\n"
return doc_format
# initialize the retriever and re-rankers
if not RETRIEVER_INITIALIZED:
class LineList(BaseModel):
lines: List[str] = Field(description="Lines of text")
class LineListOutputParser(PydanticOutputParser):
def __init__(self) -> None:
super().__init__(pydantic_object=LineList)
def parse(self, text: str) -> LineList:
lines = text.strip().split("\n")
return LineList(lines=lines)
api_list = []
with open('./data/api_documentation.json', 'r') as f:
data = json.load(f)
for i in data['ToolList']:
api_list.append(i['API Name'])
doc = []
meta = []
id = []
for itr, i in enumerate(api_list):
api = {}
doc.append(generate_document('./data/api_documentation.json', './data/examples.json', i))
api["API"] = i
meta.append(api)
id.append(f"ID{itr}")
output_parser = LineListOutputParser()
QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
# template = "Repeat the word apple two times, like, \napple\napple",
template="""You are a instructor your job is to break a query into smaller parts and provide it to worker. Given a conversation utterance by a user, ignore all the non-query part and try to break the main query into smaller steps. Don't include multiple steps, just whatever the query is trying to address. Output only the sub queries step by step and nothing else.
Original question: {question}""",
)
llm = ChatOpenAI(temperature=0)
llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT, output_parser=output_parser)
global client_hf
client_hf = chromadb.PersistentClient(path="./hf_db")
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="BAAI/bge-base-en-v1.5")
global collection_hf
collection_hf = client_hf.get_or_create_collection(name="hf_check_1", metadata={"hnsw:space": "cosine"},embedding_function = sentence_transformer_ef)
collection_hf.upsert(
documents=doc,
metadatas=meta,
ids=id
)
print(f'Total docs detected after update/restart: {collection_hf.count()}')
embeddings_hf = HuggingFaceEmbeddings(
model_name="BAAI/bge-base-en-v1.5"
)
vectorstore_hf = Chroma(
collection_name="hf_check_1",
embedding_function=embeddings_hf,
persist_directory = "./hf_db",
)
global retriever_from_llm
retriever_from_llm = MultiQueryRetriever(
retriever=vectorstore_hf.as_retriever(), llm_chain=llm_chain, parser_key="lines"
)
RETRIEVER_INITIALIZED = True
# Save doc to file
with open('data/doc.pkl', 'wb') as file:
pickle.dump(doc, file)
# Save meta to file
with open('data/meta.pkl', 'wb') as file:
pickle.dump(meta, file)
# Save id to file
with open('data/id.pkl', 'wb') as file:
pickle.dump(id, file)
def generate_document_from_api(api_name: str, api_desc: str, api_args: list):
doc_format = ''
doc_format += f"##API Name: {api_name} \n"
doc_format += f"###Description: {api_desc}\n\n"
doc_format += f'###Arguments: \n\n'
for j in api_args:
doc_format += f"API Argument: {j[0]}\n"
doc_format += f"Argument Description: {j[1]}\n"
doc_format += f"Return Type: {j[2]}\n"
# doc_format += f"Value Examples: {j['Argument Value Examples']}\n"
return doc_format
def wait_on_run(run, thread):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.5)
return run
def process_query(query: str) -> str:
# client = OpenAI()
sys_prompt = 'You are a friendly chatbot. The user will either enquire or will have a natural conversation. Each query would be resolved by a different pipeline in the backend which will generate a sequence of API calls in json format. Your goal is to *just* generate brief text (upto 35 words) that precedes the actual answer. Do not make any assumptions but act as if you are looking into it. You do not have to resolve any query so just send only one message in reply.'
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": sys_prompt},
{"role": "user", "content": query}
]
)
return completion.choices[0].message.content
# message = client.beta.threads.messages.create(
# thread_id=thread.id,
# role="user",
# content=query
# )
# run = client.beta.threads.runs.create(
# thread_id=thread.id,
# assistant_id=ASSISTANT_ID,
# )
# wait_on_run(run, thread)
# messages = client.beta.threads.messages.list(
# thread_id=thread.id,
# order='desc',
# )
# print(messages)
# idx, ite = -1, 0
# for i, msg in enumerate(messages):
# if msg.content[0].text.value == query:
# idx += i
# for msg in messages:
# if ite == idx:
# return msg.content[0].text.value
# ite += 1
def extract_api_info(unique_docs):
api_info_list = []
for idx,val in enumerate(unique_docs):
content = val.page_content
api_name_match = re.search(r'##API Name: (.+)', val.page_content)
description_match = re.search(r'###Description: (.+?)(?=\n\n|\Z)', val.page_content, re.DOTALL)
arguments_match = re.findall(r'API Argumet: (.+?)\nArgument Description: (.+?)\nReturn Type: (.+?)(?=\n\n|\Z)', val.page_content, re.DOTALL)
formatted_string = "{}\n{}\n{}".format(api_name_match.group(0), description_match.group(0), '\n'.join([f'{arg[0]}\nArgument Description: {arg[1]}\nReturn Type: {arg[2]}' for arg in arguments_match]))
struct = {"id":idx, "passage":formatted_string}
api_info_list.append(struct)
return api_info_list
def filter_api_names(unique_docs):
api_names = []
for i in unique_docs:
print((i.page_content))
api_match = re.search(r'##API Name: (.+)', i.page_content)
if api_match:
api_names.append(api_match.group(1).strip())
return api_names
def re_rank(passages_with_id_list, query, top_k):
passages_with_id_and_scores_list = []
for passage_with_id in passages_with_id_list:
score = reranker.compute_score([query, passage_with_id["passage"]])
new_struct = {"id": passage_with_id["id"], "passage": passage_with_id["passage"], "score": score}
passages_with_id_and_scores_list.append(new_struct)
passages_with_id_and_scores_list = sorted(passages_with_id_and_scores_list, key=lambda x: x["score"], reverse=True)
if len(passages_with_id_and_scores_list) <= top_k:
return passages_with_id_and_scores_list
else:
return passages_with_id_and_scores_list[:top_k]
def select_examples(unique_docs_hf):
ex_name = filter_api_names(unique_docs_hf)
with open('./data/examples.json', 'r') as f:
exam = json.load(f)
with open('data/meta.pkl', 'rb') as file:
meta = pickle.load(file)
current = [i['API'] for i in meta]
avail = [i for i in ex_name if i in current]
print(avail)
to_select = set()
for x in exam:
for api in avail:
if api in x['Output']:
qu = f"Query: {x['Query']}\n"
qu += f"Output: {x['Output']}"
to_select.add(qu)
if len(to_select) >= 3:
selected = random.choices(list(to_select), k = 3)
return "\n".join(selected)
else:
return ex.examples
def retriever(query: str):
unique_docs_hf = retriever_from_llm.get_relevant_documents(
query=query
)
top_k = len(unique_docs_hf) + 2
query = query_handler.generated_queries
passages = extract_api_info(unique_docs_hf)
re_ranked_passages = re_rank(passages, query, top_k)
retrieved_list = []
for p in re_ranked_passages:
api_des = p["passage"]
retrieved_list.append(api_des)
selected_passages = []
for passage in retrieved_list:
for doc in unique_docs_hf:
if passage in doc.page_content:
selected_passages.append(doc)
print(f'Selected passages: {selected_passages}')
return selected_passages, query_handler.generated_queries, select_examples(unique_docs_hf)
def generate_output(llm_in, temperature = 0.2):
completion = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "system", "content": 'as'},
{"role": "user", "content": llm_in}
],
temperature=0.2,
max_tokens = 250,
)
return completion.choices[0].message.content
def check_ans(query):
payload = {"query": query}
req = requests.post(
NGROK_LINK+'/predict/', json=payload)
return req.json()['text']
def feedback_part1(documentation_and_examples, input_query, model_output, temperature = 0.1, max_tokens = 250):
updated_prompt = """You are an expert at analyzing API call sequences. Given an API call sequence and the input query, your job is to explain the task being performed by the API calls in small steps and determine whether the given query is answerable or unanswerable. Do not explain the API call, just output what it is doing. Output the small steps in points and nothing else. Keep the small steps as short and precise as possible. In order for the query to be classified as answerable, there should exist a correct sequence of API calls from the given set of API tools capable of solving the given query. If the query is unanswerable, do not break the API sequence into small steps. Just output a single word Answerable/Unanswerable. Look closely into the API tools' allowed arguments before deciding, for example: sometimes queries such as extract the 'top 5' might be unanswerable since the given API tools might not have any argument which can filter out a specified set of results, and using things like 'slice' would be wrong as it is not a valid API argument! Here is the API documentation along with some examples: """ + documentation_and_examples + """\n Here is the input query: """ + input_query + """\n here is the API call sequence: """ + model_output + """\n Keep your output as concise as possible and to the point."""
length = len(encoding.encode(str(updated_prompt)))
print("Feedback 1 token length: ", length)
feedback_response1 = client.chat.completions.create(
model="gpt-4-1106-preview",
messages = [{"role": "user", "content" : updated_prompt}],
temperature=temperature,
max_tokens = max_tokens,
)
return feedback_response1.choices[0].message.content
def feedback_part2(input_query, generated_query, temperature = 0.1, max_tokens = 150):
feedback_prompt2 = """I am training an agent to generate an output API call sequence based on an input query. Based on the output generated by the agent, I have written a generated query. You have to do the following:
1) If the generated query mentions unanswerable, then just return "Unanswerable". Do not output anything else.
2) Analyze whether the generated query is different from the input query. If both of them have the same meaning, then just return "correct api sequence". Do not output anything else.
3) If they are different, then give feedback to the output generating agent about how the API call sequence by it should be modified in order to satisfy the input query. Keep the feedback precise and to the point. Do not mention the generaed query in the feedback. Output only the feedback and nothing else.\n""" + input_query + """\n Here is the generated query: \n""" + generated_query
length = len(encoding.encode(str(feedback_prompt2)))
print("Feedback 2 input token length: ", length)
feedback_response2 = client.chat.completions.create(
model="gpt-4-1106-preview",
messages = [{"role": "user", "content" : feedback_prompt2}],
temperature=temperature,
max_tokens = max_tokens,
)
return feedback_response2.choices[0].message.content
def get_feedback(input_query, model_output, documentation_and_examples):
feedback_output1 = feedback_part1(documentation_and_examples, input_query, model_output)
print("Feedback Output 1: \n", feedback_output1)
length = len(encoding.encode(str(feedback_output1)))
print("Feedback 1 output token length: ", length)
final_feedback = feedback_part2(input_query, feedback_output1)
length = len(encoding.encode(str(final_feedback)))
print("Final feedback output token length: ", length)
return final_feedback
def pipeline(query: str):
start_time = time.time()
print("Starting retrieval...")
model_in = ex.llm_input + '\n\n'
retrieved_docs, sub_queries, selected = retriever(query)
# print(f'selected examples {selected}')
retrieval_time = time.time() - start_time
print(f"Retrieval Time: {retrieval_time} seconds")
doc_text = ''
for doc in retrieved_docs:
doc_text += doc.page_content + '\n\n'
model_in += sub_queries + '\n\n'
model_in += doc_text
model_in += f'###Examples:\n{selected}\n\n'
model_in += f'###Query:\n{query}'
length = len(encoding.encode(str(model_in)))
print("Initial model token length: ", length)
start_time = time.time()
output = generate_output(model_in)
length = len(encoding.encode(str(output)))
print("Initial output token length: ", length)
generation_time = time.time() - start_time
print(f"Generation Time: {generation_time} seconds")
print(output)
doc_and_examples = doc_text + '\n\nHere are some examples: \n' + selected
feedback = get_feedback(query, output, doc_and_examples)
print("Feedback: ", feedback)
start_time = time.time()
model_in2 = ex.feedback_prompt + '\n\n' + doc_text + f'###Examples:\n{selected}\n\n' + f'###Output: {output}\n\n' + f'###Feedback: {feedback}\n\n' + f'###Query:\n{query}'
length = len(encoding.encode(str(model_in2)))
print("model_in2 token length: ", length)
if 'unanswerable' in feedback.lower():
print("Unanswerable")
output2 = 'Unanswerable'
elif 'correct api sequence' in feedback.lower():
print("Initial output is correct")
output2 = output
else:
output2 = generate_output(model_in2, temperature = 0.1)
length = len(encoding.encode(str(output2)))
print("Output2 token length: ", length)
feedback_generation_time = time.time() - start_time
print(f"Final Output Generation Time: {feedback_generation_time} seconds")
print(output2)
print(f"Total time in pipeline: {retrieval_time + generation_time + feedback_generation_time}s")
if 'unanswerable' in output2.lower() or 'unanswerable' in output.lower() or 'unanswerable' in feedback.lower():
output2 = 'Unanswerable'
return {'Output': 'None'}
try:
return parser.function_to_json(output2)
except Exception as e:
print(f"Error: {e}")
return {'Output': output2}
app = FastAPI()
# Allow requests from all origins during development
app.add_middleware(
CORSMiddleware,
# Update this with your frontend URL
allow_origins=["http://localhost:3000"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class QueryInput(BaseModel):
query: str
class QueryOutput(BaseModel):
isResponse: bool
text: str
code: dict
class SuccessMsg(BaseModel):
success: bool
class AddToolType(BaseModel):
apiName: str
apiDesc: str
names: list
class RemoveToolType(BaseModel):
apiName: str
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.post("/api/query/", response_model=QueryOutput)
async def process_query_endpoint(query_input: QueryInput):
# answerability = check_ans(query_input.query)
# if answerability == 'Unanswerable':
# return {"isResponse": True, "text": "Sorry, I don't know the answer to that. Please try another question.", "code": {}}
processed_text = process_query(query_input.query)
pipeline_output = pipeline(query_input.query)
if pipeline_output['Output'] == 'None':
processed_text += '\n\nSorry! Looks like I cannot answer this request using the provided APIs.'
return {"isResponse": True, "text": processed_text, "code": pipeline_output}
@app.post('/api/addtool/', response_model=SuccessMsg)
async def process_addtool(add_tool_input: AddToolType):
print(add_tool_input)
print(generate_document_from_api(add_tool_input.apiName,
add_tool_input.apiDesc, add_tool_input.names))
add_document(add_tool_input.apiName, generate_document_from_api(
add_tool_input.apiName, add_tool_input.apiDesc, add_tool_input.names))
return {"success": True}
@app.post('/api/updatetool/', response_model=SuccessMsg)
async def process_addtool(add_tool_input: AddToolType):
print(add_tool_input)
print(generate_document_from_api(add_tool_input.apiName,
add_tool_input.apiDesc, add_tool_input.names))
update_document(add_tool_input.apiName, generate_document_from_api(
add_tool_input.apiName, add_tool_input.apiDesc, add_tool_input.names))
return {"success": True}
@app.post('/api/removetool/', response_model=SuccessMsg)
async def process_addtool(add_tool_input: RemoveToolType):
print(add_tool_input)
remove_document(add_tool_input.apiName)
return {"success": True}