-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAttention.py
58 lines (48 loc) · 2.04 KB
/
Attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Author : Arkadipta De
Paper : A Deep Learning Approach for Automatic Detection of Fake News
by Tanik Saikh, Arkadipta De, Asif Ekbal, Pushpak Bhattacharyya
Link : https://arxiv.org/abs/2005.04938
MIT License Protected (Using for Research Purpose without Citation is punishable offence)
"""
import keras
from keras.engine.topology import Layer, Input
from keras import backend as K
from keras import initializers
#Hierarchical Attention Layer Implementation
'''
Implemented by Arkadipta De (MIT Licensed)
'''
class Hierarchical_Attention(Layer):
def __init__(self, attention_dim):
self.init = initializers.get('normal')
self.supports_masking = True
self.attention_dim = attention_dim
super(Hierarchical_Attention, self).__init__()
def build(self, input_shape):
assert len(input_shape) == 3
self.W = K.variable(self.init((input_shape[-1], self.attention_dim)))
self.b = K.variable(self.init((self.attention_dim, )))
self.u = K.variable(self.init((self.attention_dim, 1)))
self.trainable_weights = [self.W, self.b, self.u]
super(Hierarchical_Attention, self).build(input_shape)
def compute_mask(self, inputs, mask=None):
return mask
def call(self, x, mask=None):
# size of x :[batch_size, sel_len, attention_dim]
# size of u :[batch_size, attention_dim]
# uit = tanh(xW+b)
uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
ait = K.dot(uit, self.u)
ait = K.squeeze(ait, -1)
ait = K.exp(ait)
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in theano
ait *= K.cast(mask, K.floatx())
ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
ait = K.expand_dims(ait)
weighted_input = x * ait
output = K.sum(weighted_input, axis=1)
return output
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[-1])