-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
112 lines (90 loc) · 2.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import tiktoken
import torch
from models.bigram import BigramLanguageModel
torch.manual_seed(11)
# data path
data_path = os.path.expanduser(
os.path.join(
'~',
'Desktop',
)
)
file_path = os.path.join(data_path, 'tinyshakespeare.txt')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# read data
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
vocab = sorted(list(set(text)))
vocab_size = len(vocab)
stoi = {ch: i for i, ch in enumerate(vocab)}
itos = {i: ch for i, ch in enumerate(vocab)}
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
#enc = tiktoken.encoding_for_model("gpt-4")
#tokens = torch.tensor(enc.encode(text), dtype=torch.long)
tokens = torch.tensor(encode(text), dtype=torch.long)
# split data
train_data = tokens[:int(len(tokens) * 0.9)]
valid_data = tokens[int(len(tokens) * 0.9):]
batch_size = 64
n_embed = 384
context_size = 256
eval_iterations = 500
max_iterations = 5000
dropout = 0.2
learning_rate = 3e-4
nr_blocks = 6
nr_heads = 8
"""
x = tokens[:context_size]
y = tokens[1:context_size + 1]
for t in range(context_size):
input_data = x[:t + 1]
target = y[t]
print(input_data)
print(target)
"""
def get_batch(split):
if split == 'train':
data = train_data
else:
data = valid_data
start_ixs = torch.randint(len(data) - context_size, (batch_size,))
x = torch.stack([data[start_ix:start_ix + context_size] for start_ix in start_ixs])
y = torch.stack([data[start_ix + 1:start_ix + 1 + context_size] for start_ix in start_ixs])
x = x.to(device)
y = y.to(device)
return x, y
@torch.no_grad()
def estimate_loss(model):
model.eval()
out = {}
for split in ['train', 'valid']:
loss = 0.0
for _ in range(eval_iterations):
x, y = get_batch(split)
logits, loss = model(x, y)
loss += loss.item()
loss /= eval_iterations
out[split] = loss
model.train()
return out
model = BigramLanguageModel(n_embed, vocab_size, context_size, nr_blocks=nr_blocks, nr_heads=nr_heads, dropout=dropout).to(device)
model.train()
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iteration in range(max_iterations):
if iteration % eval_iterations == 0:
out = estimate_loss(model)
print(f"Iteration {iteration}, Train loss: {out['train']}, Valid loss: {out['valid']}")
x, y = get_batch('train')
optimizer.zero_grad()
_, loss = model(x, y)
loss.backward()
optimizer.step()
# save model
torch.save(model.state_dict(), 'gpt.pt')
context = torch.zeros(1, 1, dtype=torch.long, device=device)
model.eval()
generated_text = model.generate(context, 400)
print([decode(char_gen) for char_gen in generated_text.tolist()])