-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
433 lines (383 loc) · 20.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# ------------------------------------------------------------------------
# LW-DETR
# Copyright (c) 2024 Baidu. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from Conditional DETR (https://github.com/Atten4Vis/ConditionalDETR)
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
"""
cleaned main file
"""
import argparse
import datetime
import json
import random
import time
import ast
import copy
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from util.drop_scheduler import drop_scheduler
from util.get_param_dicts import get_param_dict
import util.misc as utils
from util.utils import ModelEma, BestMetricHolder, clean_state_dict
from util.benchmark import benchmark
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_encoder', default=1.5e-4, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=12, type=int)
parser.add_argument('--lr_drop', default=11, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--lr_vit_layer_decay', default=0.8, type=float)
parser.add_argument('--lr_component_decay', default=1.0, type=float)
# drop args
# dropout and stochastic depth drop rate; set at most one to non-zero
parser.add_argument('--dropout', type=float, default=0,
help='Drop path rate (default: 0.0)')
parser.add_argument('--drop_path', type=float, default=0,
help='Drop path rate (default: 0.0)')
# early / late dropout and stochastic depth settings
parser.add_argument('--drop_mode', type=str, default='standard',
choices=['standard', 'early', 'late'], help='drop mode')
parser.add_argument('--drop_schedule', type=str, default='constant',
choices=['constant', 'linear'],
help='drop schedule for early dropout / s.d. only')
parser.add_argument('--cutoff_epoch', type=int, default=0,
help='if drop_mode is early / late, this is the epoch where dropout ends / starts')
# Model parameters
parser.add_argument('--pretrained_encoder', type=str, default=None,
help="Path to the pretrained encoder.")
parser.add_argument('--pretrain_weights', type=str, default=None,
help="Path to the pretrained model.")
parser.add_argument('--pretrain_exclude_keys', type=str, default=None, nargs='+',
help="Keys you do not want to load.")
parser.add_argument('--pretrain_keys_modify_to_load', type=str, default=None, nargs='+',
help="Keys you want to modify to load. Only used when loading objects365 pre-trained weights.")
# * Backbone
parser.add_argument('--encoder', default='vit_tiny', type=str,
help="Name of the transformer or convolutional encoder to use")
parser.add_argument('--vit_encoder_num_layers', default=12, type=int,
help="Number of layers used in ViT encoder")
parser.add_argument('--window_block_indexes', default=None, type=int, nargs='+')
parser.add_argument('--position_embedding', default='sine', type=str,
choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--out_feature_indexes', default=[-1], type=int, nargs='+', help='only for vit now')
# * Transformer
parser.add_argument('--dec_layers', default=3, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--sa_nheads', default=8, type=int,
help="Number of attention heads inside the transformer's self-attentions")
parser.add_argument('--ca_nheads', default=8, type=int,
help="Number of attention heads inside the transformer's cross-attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--group_detr', default=13, type=int,
help="Number of groups to speed up detr training")
parser.add_argument('--two_stage', action='store_true')
parser.add_argument('--projector_scale', default='P4', type=str, nargs='+', choices=('P3', 'P4', 'P5', 'P6'))
parser.add_argument('--lite_refpoint_refine', action='store_true', help='lite refpoint refine mode for speed-up')
parser.add_argument('--num_select', default=100, type=int,
help='the number of predictions selected for evaluation')
parser.add_argument('--dec_n_points', default=4, type=int,
help='the number of sampling points')
parser.add_argument('--decoder_norm', default='LN', type=str)
parser.add_argument('--bbox_reparam', action='store_true')
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--sum_group_losses', action='store_true',
help="To sum losses across groups or mean losses.")
parser.add_argument('--use_varifocal_loss', action='store_true')
parser.add_argument('--use_position_supervised_loss', action='store_true')
parser.add_argument('--ia_bce_loss', action='store_true')
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--square_resize_div_64', action='store_true')
parser.add_argument('--output_dir', default='output',
help='path where to save, empty for no saving')
parser.add_argument('--checkpoint_interval', default=10, type=int,
help='epoch interval to save checkpoint')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--use_ema', action='store_true')
parser.add_argument('--ema_decay', default=0.9997, type=float)
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--sync_bn', default=True, type=bool,
help='setup synchronized BatchNorm for distributed training')
# fp16
parser.add_argument('--fp16_eval', default=False, action='store_true',
help='evaluate in fp16 precision.')
# subparsers
subparsers = parser.add_subparsers(title='sub-commands', dest='subcommand',
description='valid subcommands', help='additional help')
# subparser for export model
parser_export = subparsers.add_parser('export_model', help='LWDETR model export')
parser_export.add_argument('--shape', type=int, nargs=2, default=(640, 640), help="input shape (width, height)")
parser_export.add_argument('--infer_dir', type=str, default=None)
parser_export.add_argument('--verbose', type=ast.literal_eval, default=False, nargs="?", const=True)
parser_export.add_argument('--opset_version', type=int, default=17)
parser_export.add_argument('--simplify', action='store_true', help="Simplify onnx model")
parser_export.add_argument('--tensorrt', '--trtexec', '--trt', action='store_true',
help="build tensorrt engine")
parser_export.add_argument('--dry-run', '--test', '-t', action='store_true', help="just print command")
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
model.to(device)
if args.use_ema:
ema_m = ModelEma(model, decay=args.ema_decay)
else:
ema_m = None
model_without_ddp = model
if args.distributed:
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = get_param_dict(args, model_without_ddp)
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn,
num_workers=args.num_workers)
base_ds = get_coco_api_from_dataset(dataset_val)
if args.pretrain_weights is not None:
checkpoint = torch.load(args.pretrain_weights, map_location='cpu')
# add support to exclude_keys
# e.g., when load object365 pretrain, do not load `class_embed.[weight, bias]`
if args.pretrain_exclude_keys is not None:
assert isinstance(args.pretrain_exclude_keys, list)
for exclude_key in args.pretrain_exclude_keys:
checkpoint['model'].pop(exclude_key)
if args.pretrain_keys_modify_to_load is not None:
from util.obj365_to_coco_model import get_coco_pretrain_from_obj365
assert isinstance(args.pretrain_keys_modify_to_load, list)
for modify_key_to_load in args.pretrain_keys_modify_to_load:
checkpoint['model'][modify_key_to_load] = get_coco_pretrain_from_obj365(
model_without_ddp.state_dict()[modify_key_to_load],
checkpoint['model'][modify_key_to_load]
)
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
if args.use_ema:
del ema_m
ema_m = ModelEma(model_without_ddp)
output_dir = Path(args.output_dir)
if utils.is_main_process():
print("Get benchmark")
benchmark_model = copy.deepcopy(model_without_ddp)
bm = benchmark(benchmark_model.float(), dataset_val, output_dir)
print(json.dumps(bm, indent=2))
del benchmark_model
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=True)
if args.use_ema:
if 'ema_model' in checkpoint:
ema_m.module.load_state_dict(clean_state_dict(checkpoint['ema_model']))
else:
del ema_m
ema_m = ModelEma(model)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
checkpoint['optimizer']["param_groups"] = optimizer.state_dict()["param_groups"]
checkpoint['lr_scheduler'].pop("step_size")
checkpoint['lr_scheduler'].pop("_last_lr")
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
# for drop
total_batch_size = args.batch_size * utils.get_world_size()
num_training_steps_per_epoch = (len(dataset_train) + total_batch_size - 1) // total_batch_size
schedules = {}
if args.dropout > 0:
schedules['do'] = drop_scheduler(
args.dropout, args.epochs, num_training_steps_per_epoch,
args.cutoff_epoch, args.drop_mode, args.drop_schedule)
print("Min DO = %.7f, Max DO = %.7f" % (min(schedules['do']), max(schedules['do'])))
if args.drop_path > 0:
schedules['dp'] = drop_scheduler(
args.drop_path, args.epochs, num_training_steps_per_epoch,
args.cutoff_epoch, args.drop_mode, args.drop_schedule)
print("Min DP = %.7f, Max DP = %.7f" % (min(schedules['dp']), max(schedules['dp'])))
print("Start training")
start_time = time.time()
best_map_holder = BestMetricHolder(use_ema=args.use_ema)
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, ema_m=ema_m, schedules=schedules,
num_training_steps_per_epoch=num_training_steps_per_epoch,
vit_encoder_num_layers=args.vit_encoder_num_layers, args=args)
train_epoch_time = time.time() - epoch_start_time
train_epoch_time_str = str(datetime.timedelta(seconds=int(train_epoch_time)))
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every `checkpoint_interval` epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.checkpoint_interval == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
weights = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}
if args.use_ema:
weights.update({
'ema_model': ema_m.module.state_dict(),
})
utils.save_on_master(weights, checkpoint_path)
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args=args
)
map_regular = test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_regular, epoch, is_ema=False)
if _isbest:
checkpoint_path = output_dir / 'checkpoint_best_regular.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.use_ema:
ema_test_stats, _ = evaluate(
ema_m.module, criterion, postprocessors, data_loader_val, base_ds, device, args=args
)
log_stats.update({f'ema_test_{k}': v for k,v in ema_test_stats.items()})
map_ema = ema_test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_ema, epoch, is_ema=True)
if _isbest:
checkpoint_path = output_dir / 'checkpoint_best_ema.pth'
utils.save_on_master({
'model': ema_m.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats.update(best_map_holder.summary())
# epoch parameters
ep_paras = {
'epoch': epoch,
'n_parameters': n_parameters
}
log_stats.update(ep_paras)
try:
log_stats.update({'now_time': str(datetime.datetime.now())})
except:
pass
log_stats['train_epoch_time'] = train_epoch_time_str
epoch_time = time.time() - epoch_start_time
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
log_stats['epoch_time'] = epoch_time_str
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('LWDETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.subcommand is None:
main(args)
elif args.subcommand == 'export_model':
from deploy.export import main
if args.batch_size != 1:
args.batch_size = 1
print(f"Only batch_size 1 is supported for onnx export, \
but got batchsize = {args.batch_size}. batch_size is forcibly set to 1.")
main(args)