-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
151 lines (134 loc) · 4.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
use_cuda = True
from IPython.display import SVG, display
import numpy as np
import svgwrite
from six.moves import xrange
import math
import torch.nn as nn
# Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.d_model = d_model
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * math.sqrt(self.d_model)
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
def sample_bivariate_normal(mu_x, mu_y, sigma_x, sigma_y, rho_xy, temperature = 0.2, greedy=False):
# inputs must be floats
if greedy:
return mu_x, mu_y
mean = [mu_x, mu_y]
sigma_x *= np.sqrt(temperature) #confusion
sigma_y *= np.sqrt(temperature) #confusion
cov = [[sigma_x * sigma_x, rho_xy * sigma_x * sigma_y], \
[rho_xy * sigma_x * sigma_y, sigma_y * sigma_y]]
x = np.random.multivariate_normal(mean, cov, 1)
return x[0][0], x[0][1]
def sample_gaussian_2d(mu1, mu2, s1, s2, rho, temp=1.0, greedy=False):
if greedy:
return mu1, mu2
mean = [mu1, mu2]
s1 *= temp * temp
s2 *= temp * temp
cov = [[s1 * s1, rho * s1 * s2], [rho * s1 * s2, s2 * s2]]
x = np.random.multivariate_normal(mean, cov, 1)
return x[0][0], x[0][1]
# little function that displays vector images and saves them to .svg
def draw_strokes(data, factor=0.2, svg_filename='./sample.svg'):
min_x, max_x, min_y, max_y = get_bounds(data, factor)
dims = (50 + max_x - min_x, 50 + max_y - min_y)
dwg = svgwrite.Drawing(svg_filename, size=dims)
dwg.add(dwg.rect(insert=(0, 0), size=dims, fill='white'))
lift_pen = 1
abs_x = 25 - min_x
abs_y = 25 - min_y
p = "M%s,%s " % (abs_x, abs_y)
command = "m"
for i in xrange(len(data)):
if (lift_pen == 1):
command = "m"
elif (command != "l"):
command = "l"
else:
command = ""
x = float(data[i, 0]) / factor
y = float(data[i, 1]) / factor
lift_pen = data[i, 2]
p += command + str(x) + "," + str(y) + " "
the_color = "black"
stroke_width = 1
dwg.add(dwg.path(p).stroke(the_color, stroke_width).fill("none"))
dwg.save()
display(SVG(dwg.tostring()))
# generate a 2D grid of many vector drawings
def make_grid_svg(s_list, grid_space=10.0, grid_space_x=16.0):
def get_start_and_end(x):
x = np.array(x)
x = x[:, 0:2]
x_start = x[0]
x_end = x.sum(axis=0)
x = x.cumsum(axis=0)
x_max = x.max(axis=0)
x_min = x.min(axis=0)
center_loc = (x_max + x_min) * 0.5
return x_start - center_loc, x_end
x_pos = 0.0
y_pos = 0.0
result = [[x_pos, y_pos, 1]]
for sample in s_list:
s = sample[0]
grid_loc = sample[1]
grid_y = grid_loc[0] * grid_space + grid_space * 0.5
grid_x = grid_loc[1] * grid_space_x + grid_space_x * 0.5
start_loc, delta_pos = get_start_and_end(s)
loc_x = start_loc[0]
loc_y = start_loc[1]
new_x_pos = grid_x + loc_x
new_y_pos = grid_y + loc_y
result.append([new_x_pos - x_pos, new_y_pos - y_pos, 0])
result += s.tolist()
result[-1][2] = 1
x_pos = new_x_pos + delta_pos[0]
y_pos = new_y_pos + delta_pos[1]
return np.array(result)
def to_normal_strokes(big_stroke):
"""Convert from stroke-5 format (from sketch-rnn paper) back to stroke-3."""
l = 0
for i in range(len(big_stroke)):
if big_stroke[i, 4] > 0:
l = i
break
if l == 0:
l = len(big_stroke)
result = np.zeros((l, 3))
result[:, 0:2] = big_stroke[0:l, 0:2]
result[:, 2] = big_stroke[0:l, 3]
return result
def get_bounds(data, factor=10):
"""Return bounds of data."""
min_x = 0
max_x = 0
min_y = 0
max_y = 0
abs_x = 0
abs_y = 0
for i in range(len(data)):
x = float(data[i, 0]) / factor
y = float(data[i, 1]) / factor
abs_x += x
abs_y += y
min_x = min(min_x, abs_x)
min_y = min(min_y, abs_y)
max_x = max(max_x, abs_x)
max_y = max(max_y, abs_y)
return (min_x, max_x, min_y, max_y)