-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
125 lines (99 loc) · 4.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import numpy as np
import cv2
import argparse
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.downsample = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.MaxPool2d(2),
)
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(64, 2, kernel_size=3, padding=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Tanh(),
)
def forward(self, x):
ds = self.downsample(x)
output = self.upsample(ds)
return output
def preprocess_image(image_path):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (128, 128))
image_lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
l_channel = image_lab[:, :, 0]
l_channel_normalized = l_channel / 255.0
return l_channel_normalized, image_lab
def scale_ab_channels(ab_channels):
return (ab_channels + 1) * 128 # Correct scaling to [0, 255] range
def combine_channels(l_channel, ab_channels):
l_channel = np.expand_dims(l_channel, axis=-1) * 255.0
lab_image = np.concatenate((l_channel, ab_channels), axis=-1)
return lab_image
def visualize(image_path, model):
l_channel, image_lab = preprocess_image(image_path)
l_channel_input = np.expand_dims(l_channel, axis=0)
l_channel_input = np.expand_dims(l_channel_input, axis=1)
l_channel_tensor = torch.from_numpy(l_channel_input).float().to(device)
with torch.no_grad():
predicted_ab_channels = model(l_channel_tensor).squeeze(0).cpu().numpy()
predicted_ab_channels = predicted_ab_channels.transpose(1, 2, 0)
scaled_ab_channels = scale_ab_channels(predicted_ab_channels)
predicted_image_lab = combine_channels(l_channel, scaled_ab_channels)
predicted_image_rgb = cv2.cvtColor(predicted_image_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
return predicted_image_rgb
def load_model(model_path):
model = Unet()
model.load_state_dict(torch.load(model_path, map_location=device))
model = model.to(device)
model.eval()
return model
def main(input_path, output_path, model_path):
image = cv2.imread(input_path)
height, width, channels = image.shape
model = load_model(model_path)
colorized_image = visualize(input_path, model)
colorized_image = cv2.resize(colorized_image, (width,height), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(output_path, cv2.cvtColor(colorized_image, cv2.COLOR_RGB2BGR))
print("Done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Automatic Image Colorization")
parser.add_argument('--input', type=str, required=True, help="Path to the input grayscale image")
parser.add_argument('--output', type=str, required=True, help="Path to save the colorized image")
parser.add_argument('--model', type=str, default='model.pth', help="Path to the model parameters")
args = parser.parse_args()
main(args.input, args.output, args.model)