forked from jrnold/r4ds-exercise-solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrings.Rmd
1161 lines (817 loc) · 32.7 KB
/
strings.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
output: html_document
editor_options:
chunk_output_type: console
---
# Strings {#strings .r4ds-section}
## Introduction {#introduction-8 .r4ds-section}
```{r setup,message=FALSE,cache=FALSE}
library("tidyverse")
```
## String basics {#string-basics .r4ds-section}
### Exercise 14.2.1 {.unnumbered .exercise data-number="14.2.1"}
<div class="question">
In code that doesn’t use stringr, you’ll often see `paste()` and `paste0()`.
What’s the difference between the two functions? What stringr function are they equivalent to?
How do the functions differ in their handling of `NA`?
</div>
<div class="answer">
The function `paste()` separates strings by spaces by default, while `paste0()` does not separate strings with spaces by default.
```{r}
paste("foo", "bar")
paste0("foo", "bar")
```
Since `str_c()` does not separate strings with spaces by default it is closer in behavior to `paste0()`.
```{r}
str_c("foo", "bar")
```
However, `str_c()` and the paste function handle NA differently.
The function `str_c()` propagates `NA`, if any argument is a missing value, it returns a missing value.
This is in line with how the numeric R functions, e.g. `sum()`, `mean()`, handle missing values.
However, the paste functions, convert `NA` to the string `"NA"` and then treat it as any other character vector.
```{r}
str_c("foo", NA)
paste("foo", NA)
paste0("foo", NA)
```
</div>
### Exercise 14.2.2 {.unnumbered .exercise data-number="14.2.2"}
<div class="question">
In your own words, describe the difference between the `sep` and `collapse` arguments to `str_c()`.
</div>
<div class="answer">
The `sep` argument is the string inserted between arguments to `str_c()`, while `collapse` is the string used to separate any elements of the character vector into a character vector of length one.
</div>
### Exercise 14.2.3 {.unnumbered .exercise data-number="14.2.3"}
<div class="question">
Use `str_length()` and `str_sub()` to extract the middle character from a string. What will you do if the string has an even number of characters?
</div>
<div class="answer">
The following function extracts the middle character. If the string has an even number of characters the choice is arbitrary.
We choose to select $\lceil n / 2 \rceil$, because that case works even if the string is only of length one.
A more general method would allow the user to select either the floor or ceiling for the middle character of an even string.
```{r}
x <- c("a", "abc", "abcd", "abcde", "abcdef")
L <- str_length(x)
m <- ceiling(L / 2)
str_sub(x, m, m)
```
</div>
### Exercise 14.2.4 {.unnumbered .exercise data-number="14.2.4"}
<div class="question">
What does `str_wrap()` do? When might you want to use it?
</div>
<div class="answer">
The function `str_wrap()` wraps text so that it fits within a certain width.
This is useful for wrapping long strings of text to be typeset.
</div>
### Exercise 14.2.5 {.unnumbered .exercise data-number="14.2.5"}
<div class="question">
What does `str_trim()` do? What’s the opposite of `str_trim()`?
</div>
<div class="answer">
The function `str_trim()` trims the whitespace from a string.
```{r}
str_trim(" abc ")
str_trim(" abc ", side = "left")
str_trim(" abc ", side = "right")
```
The opposite of `str_trim()` is `str_pad()` which adds characters to each side.
```{r}
str_pad("abc", 5, side = "both")
str_pad("abc", 4, side = "right")
str_pad("abc", 4, side = "left")
```
</div>
### Exercise 14.2.6 {.unnumbered .exercise data-number="14.2.6"}
<div class="question">
Write a function that turns (e.g.) a vector `c("a", "b", "c")` into the string `"a, b, and c"`. Think carefully about what it should do if given a vector of length 0, 1, or 2.
</div>
<div class="answer">
See the Chapter [Functions] for more details on writing R functions.
This function needs to handle four cases.
1. `n == 0`: an empty string, e.g. `""`.
1. `n == 1`: the original vector, e.g. `"a"`.
1. `n == 2`: return the two elements separated by "and", e.g. `"a and b"`.
1. `n > 2`: return the first `n - 1` elements separated by commas, and the last element separated by a comma and "and", e.g. `"a, b, and c"`.
```{r}
str_commasep <- function(x, delim = ",") {
n <- length(x)
if (n == 0) {
""
} else if (n == 1) {
x
} else if (n == 2) {
# no comma before and when n == 2
str_c(x[[1]], "and", x[[2]], sep = " ")
} else {
# commas after all n - 1 elements
not_last <- str_c(x[seq_len(n - 1)], delim)
# prepend "and" to the last element
last <- str_c("and", x[[n]], sep = " ")
# combine parts with spaces
str_c(c(not_last, last), collapse = " ")
}
}
str_commasep("")
str_commasep("a")
str_commasep(c("a", "b"))
str_commasep(c("a", "b", "c"))
str_commasep(c("a", "b", "c", "d"))
```
</div>
## Matching patterns with regular expressions {#matching-patterns-with-regular-expressions .r4ds-section}
### Basic matches {#basic-matches .r4ds-section}
#### Exercise 14.3.1.1 {.unnumbered .exercise data-number="14.3.1.1"}
<div class="question">
Explain why each of these strings don’t match a `\`: `"\"`, `"\\"`, `"\\\"`.
</div>
<div class="answer">
- `"\"`: This will escape the next character in the R string.
- `"\\"`: This will resolve to `\` in the regular expression, which will escape the next character in the regular expression.
- `"\\\"`: The first two backslashes will resolve to a literal backslash in the regular expression, the third will escape the next character. So in the regular expression, this will escape some escaped character.
</div>
#### Exercise 14.3.1.2 {.unnumbered .exercise data-number="14.3.1.2"}
<div class="question">
How would you match the sequence `"'\` ?
</div>
<div class="answer">
```{r cache=FALSE}
str_view("\"'\\", "\"'\\\\", match = TRUE)
```
</div>
#### Exercise 14.3.1.3 {.unnumbered .exercise data-number="14.3.1.3"}
<div class="question">
What patterns will the regular expression `\..\..\..` match? How would you represent it as a string?
</div>
<div class="answer">
It will match any patterns that are a dot followed by any character, repeated three times.
```{r cache=FALSE}
str_view(c(".a.b.c", ".a.b", "....."), c("\\..\\..\\.."), match = TRUE)
```
</div>
### Anchors {#anchors .r4ds-section}
#### Exercise 14.3.2.1 {.unnumbered .exercise data-number="14.3.2.1"}
<div class="question">
How would you match the literal string `"$^$"`?
</div>
<div class="answer">
To check that the pattern works, I'll include both the string `"$^$"`, and an example where that pattern occurs in the middle of the string which should not be matched.
```{r cache=FALSE}
str_view(c("$^$", "ab$^$sfas"), "^\\$\\^\\$$", match = TRUE)
```
</div>
#### Exercise 14.3.2.2 {.unnumbered .exercise data-number="14.3.2.2"}
<div class="question">
Given the corpus of common words in `stringr::words`, create regular expressions that find all words that:
1. Start with “y”.
1. End with “x”
1. Are exactly three letters long. (Don’t cheat by using `str_length()`!)
1. Have seven letters or more.
Since this list is long, you might want to use the `match` argument to `str_view()` to show only the matching or non-matching words.
</div>
<div class="answer">
The answer to each part follows.
1. The words that start with “y” are:
```{r cache=FALSE}
str_view(stringr::words, "^y", match = TRUE)
```
1. End with “x”
```{r cache=FALSE}
str_view(stringr::words, "x$", match = TRUE)
```
1. Are exactly three letters long are
```{r cache=FALSE}
str_view(stringr::words, "^...$", match = TRUE)
```
1. The words that have seven letters or more:
```{r cache=FALSE}
str_view(stringr::words, ".......", match = TRUE)
```
Since the pattern `.......` is not anchored with either `.` or `$`
this will match any word with at last seven letters.
The pattern, `^.......$`, matches words with exactly seven characters.
</div>
### Character classes and alternatives {#character-classes-and-alternatives .r4ds-section}
#### Exercise 14.3.3.1 {.unnumbered .exercise data-number="14.3.3.1"}
<div class="question">
Create regular expressions to find all words that:
1. Start with a vowel.
1. That only contain consonants. (Hint: thinking about matching “not”-vowels.)
1. End with `ed`, but not with `eed`.
1. End with `ing` or `ise`.
</div>
<xdiv class="answer">
The answer to each part follows.
1. Words starting with vowels
```{r }
str_subset(stringr::words, "^[aeiou]")
```
1. Words that contain only consonants: Use the `negate`
argument of `str_subset`.
```{r}
str_subset(stringr::words, "[aeiou]", negate=TRUE)
```
Alternatively, using `str_view()` the consonant-only
words are:
```{r}
str_view(stringr::words, "[aeiou]", match=FALSE)
```
1. Words that end with "-ed" but not ending in "-eed".
```{r }
str_subset(stringr::words, "[^e]ed$")
```
The pattern above will not match the word `"ed"`. If we wanted to include that, we could include it as a special case.
```{r}
str_subset(c("ed", stringr::words), "(^|[^e])ed$")
```
1. Words ending in `ing` or `ise`:
```{r }
str_subset(stringr::words, "i(ng|se)$")
```
</div>
#### Exercise 14.3.3.2 {.unnumbered .exercise data-number="14.3.3.2"}
<div class="question">
Empirically verify the rule “i” before e except after “c”.
</div>
<div class="answer">
```{r }
length(str_subset(stringr::words, "(cei|[^c]ie)"))
```
```{r }
length(str_subset(stringr::words, "(cie|[^c]ei)"))
```
</div>
#### Exercise 14.3.3.3 {.unnumbered .exercise data-number="14.3.3.3"}
<div class="question">
Is “q” always followed by a “u”?
</div>
<div class="answer">
In the `stringr::words` dataset, yes.
```{r cache=FALSE}
str_view(stringr::words, "q[^u]", match = TRUE)
```
In the English language--- [no](https://en.wiktionary.org/wiki/Appendix:English_words_containing_Q_not_followed_by_U).
However, the examples are few, and mostly loanwords, such as "burqa" and "cinq".
Also, "qwerty".
That I had to add all of those examples to the list of words that spellchecking should ignore is indicative of their rarity.
</div>
#### Exercise 14.3.3.4 {.unnumbered .exercise data-number="14.3.3.4"}
<div class="question">
Write a regular expression that matches a word if it’s probably written in British English, not American English.
</div>
<div class="answer">
In the general case, this is hard, and could require a dictionary.
But, there are a few heuristics to consider that would account for some common cases: British English tends to use the following:
- "ou" instead of "o"
- use of "ae" and "oe" instead of "a" and "o"
- ends in `ise` instead of `ize`
- ends in `yse`
The regex `ou|ise$|ae|oe|yse$` would match these.
There are other [spelling differences between American and British English](https://en.wikipedia.org/wiki/American_and_British_English_spelling_differences) but they are not patterns amenable to regular expressions.
It would require a dictionary with differences in spellings for different words.
</div>
#### Exercise 14.3.3.5 {.unnumbered .exercise data-number="14.3.3.5"}
<div class="question">
Create a regular expression that will match telephone numbers as commonly written in your country.
</div>
<div class="answer">
<div class="alert alert-primary hints-alert>
This answer can be improved and expanded.
</div>
The answer to this will vary by country.
<!-- grouping is not covered until 14.3.5 -->
For the United States, phone numbers have a format like `123-456-7890` or `(123)456-7890`).
These regular expressions will parse the first form
```{r cache=FALSE}
x <- c("123-456-7890", "(123)456-7890", "(123) 456-7890", "1235-2351")
str_view(x, "\\d\\d\\d-\\d\\d\\d-\\d\\d\\d\\d")
```
```{r cache=FALSE}
str_view(x, "[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]")
```
The regular expressions will parse the second form:
```{r cache=FALSE}
str_view(x, "\\(\\d\\d\\d\\)\\s*\\d\\d\\d-\\d\\d\\d\\d")
```
```{r cache=FALSE}
str_view(x, "\\([0-9][0-9][0-9]\\)[ ]*[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]")
```
This regular expression can be simplified with the `{m,n}` regular expression modifier introduced in the next section,
```{r cache=FALSE}
str_view(x, "\\d{3}-\\d{3}-\\d{4}")
```
```{r cache=FALSE}
str_view(x, "\\(\\d{3}\\)\\s*\\d{3}-\\d{4}")
```
Note that this pattern doesn't account for phone numbers that are invalid
due to an invalid area code.
Nor does this pattern account for special numbers like 911.
It also doesn't parse a leading country code or an extensions.
See the Wikipedia page for the [North American Numbering
Plan](https://en.wikipedia.org/wiki/North_American_Numbering_Plan) for more information on the complexities of US phone numbers, and [this Stack Overflow
question](https://stackoverflow.com/questions/123559/a-comprehensive-regex-for-phone-number-validation) for a discussion of using a regex for phone number validation.
The R package [dialr](https://cran.r-project.org/web/packages/dialr/index.html) implements robust phone number parsing.
Generally, for patterns like phone numbers or URLs it is better to use a dedicated package.
It is easy to match the pattern for the most common cases and useful for learning regular expressions, but in real applications there often edge cases that are handled by dedicated packages.
</div>
### Repetition {#repetition .r4ds-section}
#### Exercise 14.3.4.1 {.unnumbered .exercise data-number="14.3.4.1"}
<div class="question">
Describe the equivalents of `?`, `+`, `*` in `{m,n}` form.
</div>
<div class="answer">
| Pattern | `{m,n}` | Meaning |
|---------|---------|-------------------|
| `?` | `{0,1}` | Match at most 1 |
| `+` | `{1,}` | Match 1 or more |
| `*` | `{0,}` | Match 0 or more |
For example, let's repeat the examples in the chapter, replacing `?` with `{0,1}`,
`+` with `{1,}`, and `*` with `{*,}`.
```{r }
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
```
```{r cache=FALSE}
str_view(x, "CC?")
```
```{r cache=FALSE}
str_view(x, "CC{0,1}")
```
```{r cache=FALSE}
str_view(x, "CC+")
```
```{r cache=FALSE}
str_view(x, "CC{1,}")
```
```{r cache=FALSE}
str_view_all(x, "C[LX]+")
```
```{r cache=FALSE}
str_view_all(x, "C[LX]{1,}")
```
The chapter does not contain an example of `*`.
This pattern looks for a "C" optionally followed by
any number of "L" or "X" characters.
```{r cache=FALSE}
str_view_all(x, "C[LX]*")
```
```{r cache=FALSE}
str_view_all(x, "C[LX]{0,}")
```
</div>
#### Exercise 14.3.4.2 {.unnumbered .exercise data-number="14.3.4.2"}
<div class="question">
Describe in words what these regular expressions match: (read carefully to see if I’m using a regular expression or a string that defines a regular expression.)
1. `^.*$`
1. `"\\{.+\\}"`
1. `\d{4}-\d{2}-\d{2}`
1. `"\\\\{4}"`
</div>
<div class="answer">
The answer to each part follows.
1. `^.*$` will match any string. For example: `^.*$`: `c("dog", "$1.23", "lorem ipsum")`.
1. `"\\{.+\\}"` will match any string with curly braces surrounding at least one character.
For example: `"\\{.+\\}"`: `c("{a}", "{abc}")`.
1. `\d{4}-\d{2}-\d{2}` will match four digits followed by a hyphen, followed by
two digits followed by a hyphen, followed by another two digits.
This is a regular expression that can match dates formatted like "YYYY-MM-DD" ("%Y-%m-%d").
For example: `\d{4}-\d{2}-\d{2}`: `2018-01-11`
1. `"\\\\{4}"` is `\\{4}`, which will match four backslashes.
For example: `"\\\\{4}"`: `"\\\\\\\\"`.
</div>
#### Exercise 14.3.4.3 {.unnumbered .exercise data-number="14.3.4.3"}
<div class="question">
Create regular expressions to find all words that:
1. Start with three consonants.
1. Have three or more vowels in a row.
1. Have two or more vowel-consonant pairs in a row.
</div>
<div class="answer">
The answer to each part follows.
1. This regex finds all words starting with three consonants.
```{r cache=FALSE}
str_view(words, "^[^aeiou]{3}", match = TRUE)
```
1. This regex finds three or more vowels in a row:
```{r cache=FALSE}
str_view(words, "[aeiou]{3,}", match = TRUE)
```
1. This regex finds two or more vowel-consonant pairs in a row.
```{r cache=FALSE}
str_view(words, "([aeiou][^aeiou]){2,}", match = TRUE)
```
</div>
#### Exercise 14.3.4.4 {.unnumbered .exercise data-number="14.3.4.4"}
<div class="question">
Solve the beginner regexp crosswords at <https://regexcrossword.com/challenges/>
</div>
<div class="answer">
Exercise left to reader. That site validates its solutions, so they aren't repeated here.
</div>
### Grouping and backreferences {#grouping-and-backreferences .r4ds-section}
#### Exercise 14.3.5.1 {.unnumbered .exercise data-number="14.3.5.1"}
<div class="question">
Describe, in words, what these expressions will match:
1. `(.)\1\1` :
1. `"(.)(.)\\2\\1"`:
1. `(..)\1`:
1. `"(.).\\1.\\1"`:
1. `"(.)(.)(.).*\\3\\2\\1"`
</div>
<div class="answer">
The answer to each part follows.
1. `(.)\1\1`: The same character appearing three times in a row. E.g. `"aaa"`
1. `"(.)(.)\\2\\1"`: A pair of characters followed by the same pair of characters in reversed order. E.g. `"abba"`.
1. `(..)\1`: Any two characters repeated. E.g. `"a1a1"`.
1. `"(.).\\1.\\1"`: A character followed by any character, the original character, any other character, the original character again. E.g. `"abaca"`, `"b8b.b"`.
1. `"(.)(.)(.).*\\3\\2\\1"` Three characters followed by zero or more characters of any kind followed by the same three characters but in reverse order. E.g. `"abcsgasgddsadgsdgcba"` or `"abccba"` or `"abc1cba"`.
</div>
#### Exercise 14.3.5.2 {.unnumbered .exercise data-number="14.3.5.2"}
<div class="question">
Construct regular expressions to match words that:
1. Start and end with the same character.
1. Contain a repeated pair of letters (e.g. ``church'' contains ``ch'' repeated twice.)
1. Contain one letter repeated in at least three places (e.g. ``eleven'' contains three ``e''s.)
</div>
<div class="answer">
The answer to each part follows.
<!-- Use str_subset because I just want to pull words out -->
1. This regular expression matches words that start and end with the same character.
```{r }
str_subset(words, "^(.)((.*\\1$)|\\1?$)")
```
1. This regular expression will match any pair of repeated letters, where *letters* is defined to be the ASCII letters A-Z.
First, check that it works with the example in the problem.
```{r}
str_subset("church", "([A-Za-z][A-Za-z]).*\\1")
```
Now, find all matching words in `words`.
```{r}
str_subset(words, "([A-Za-z][A-Za-z]).*\\1")
```
The `\\1` pattern is called a backreference. It matches whatever the first group
matched. This allows the pattern to match a repeating pair of letters without having
to specify exactly what pair letters is being repeated.
Note that these patterns are case sensitive. Use the
case insensitive flag if you want to check for repeated pairs
of letters with different capitalization.
1. This regex matches words that contain one letter repeated in at least three places.
First, check that it works with th example given in the question.
```{r}
str_subset("eleven", "([a-z]).*\\1.*\\1")
```
Now, retrieve the matching words in `words`.
```{r}
str_subset(words, "([a-z]).*\\1.*\\1")
```
</div>
## Tools {#tools .r4ds-section}
### Detect matches {#detect-matches .r4ds-section}
#### Exercise 14.4.1.1 {.unnumbered .exercise data-number="14.4.1.1"}
<div class="question">
For each of the following challenges, try solving it by using both a single regular expression, and a combination of multiple `str_detect()` calls.
1. Find all words that start or end with x.
1. Find all words that start with a vowel and end with a consonant.
1. Are there any words that contain at least one of each different vowel?
</div>
<div class="answer">
The answer to each part follows.
1. Words that start or end with `x`?
```{r}
# one regex
words[str_detect(words, "^x|x$")]
# split regex into parts
start_with_x <- str_detect(words, "^x")
end_with_x <- str_detect(words, "x$")
words[start_with_x | end_with_x]
```
1. Words starting with vowel and ending with consonant.
```{r}
str_subset(words, "^[aeiou].*[^aeiou]$") %>% head()
start_with_vowel <- str_detect(words, "^[aeiou]")
end_with_consonant <- str_detect(words, "[^aeiou]$")
words[start_with_vowel & end_with_consonant] %>% head()
```
1. There is not a simple regular expression to match words that
that contain at least one of each vowel. The regular expression
would need to consider all possible orders in which the vowels
could occur.
```{r}
pattern <-
cross(rerun(5, c("a", "e", "i", "o", "u")),
.filter = function(...) {
x <- as.character(unlist(list(...)))
length(x) != length(unique(x))
}
) %>%
map_chr(~str_c(unlist(.x), collapse = ".*")) %>%
str_c(collapse = "|")
```
To check that this pattern works, test it on a pattern that
should match
```{r}
str_subset("aseiouds", pattern)
```
Using multiple `str_detect()` calls, one pattern for each vowel,
produces a much simpler and readable answer.
```{r}
str_subset(words, pattern)
words[str_detect(words, "a") &
str_detect(words, "e") &
str_detect(words, "i") &
str_detect(words, "o") &
str_detect(words, "u")]
```
There appear to be none.
</div>
#### Exercise 14.4.1.2 {.unnumbered .exercise data-number="14.4.1.2"}
<div class="question">
What word has the higher number of vowels? What word has the highest proportion of vowels? (Hint: what is the denominator?)
</div>
<div class="answer">
The word with the highest number of vowels is
```{r}
vowels <- str_count(words, "[aeiou]")
words[which(vowels == max(vowels))]
```
The word with the highest proportion of vowels is
```{r}
prop_vowels <- str_count(words, "[aeiou]") / str_length(words)
words[which(prop_vowels == max(prop_vowels))]
```
</div>
### Extract matches {#extract-matches .r4ds-section}
#### Exercise 14.4.2.1 {.unnumbered .exercise data-number="14.4.2.1"}
<div class="question">
In the previous example, you might have noticed that the regular expression matched “flickered”, which is not a color.
Modify the regex to fix the problem.
</div>
<div class="answer">
This was the original color match pattern:
```{r}
colours <- c("red", "orange", "yellow", "green", "blue", "purple")
colour_match <- str_c(colours, collapse = "|")
```
It matches "flickered" because it matches "red".
The problem is that the previous pattern will match any word with the name of a color inside it. We want to only match colors in which the entire word is the name of the color.
We can do this by adding a `\b` (to indicate a word boundary) before and after the pattern:
```{r}
colour_match2 <- str_c("\\b(", str_c(colours, collapse = "|"), ")\\b")
colour_match2
```
```{r}
more2 <- sentences[str_count(sentences, colour_match) > 1]
```
```{r cache=FALSE}
str_view_all(more2, colour_match2, match = TRUE)
```
</div>
#### Exercise 14.4.2.2 {.unnumbered .exercise data-number="14.4.2.2"}
<div class="question">
From the Harvard sentences data, extract:
1. The first word from each sentence.
1. All words ending in `ing`.
1. All plurals.
</div>
<div class="answer">
The answer to each part follows.
1. Finding the first word in each sentence requires defining what a pattern constitutes a word. For the purposes of this question,
I'll consider a word any contiguous set of letters.
Since `str_extract()` will extract the first match, if it is provided a
regular expression for words, it will return the first word.
```{r}
str_extract(sentences, "[A-ZAa-z]+") %>% head()
```
However, the third sentence begins with "It's". To catch this, I'll
change the regular expression to require the string to begin with a letter,
but allow for a subsequent apostrophe.
```{r}
str_extract(sentences, "[A-Za-z][A-Za-z']*") %>% head()
```
1. This pattern finds all words ending in `ing`.
```{r}
pattern <- "\\b[A-Za-z]+ing\\b"
sentences_with_ing <- str_detect(sentences, pattern)
unique(unlist(str_extract_all(sentences[sentences_with_ing], pattern))) %>%
head()
```
1. Finding all plurals cannot be correctly accomplished with regular expressions alone.
Finding plural words would at least require morphological information about words in the language.
See [WordNet](https://cran.r-project.org/web/packages/wordnet/index.html) for a resource that would do that.
However, identifying words that end in an "s" and with more than three characters, in order to remove "as", "is", "gas", etc., is
a reasonable heuristic.
```{r}
unique(unlist(str_extract_all(sentences, "\\b[A-Za-z]{3,}s\\b"))) %>%
head()
```
</div>
### Grouped matches {#grouped-matches .r4ds-section}
#### Exercise 14.4.3.1 {.unnumbered .exercise data-number="14.4.3.1"}
<div class="question">
Find all words that come after a “number” like “one”, “two”, “three” etc.
Pull out both the number and the word.
</div>
<div class="answer">
```{r}
numword <- "\\b(one|two|three|four|five|six|seven|eight|nine|ten) +(\\w+)"
sentences[str_detect(sentences, numword)] %>%
str_extract(numword)
```
</div>
#### Exercise 14.4.3.2 {.unnumbered .exercise data-number="14.4.3.2"}
<div class="question">
Find all contractions.
Separate out the pieces before and after the apostrophe.
</div>
<div class="answer">
This is done in two steps. First, identify the contractions. Second, split the string on the contraction.
```{r}
contraction <- "([A-Za-z]+)'([A-Za-z]+)"
sentences[str_detect(sentences, contraction)] %>%
str_extract(contraction) %>%
str_split("'")
```
</div>
### Replacing matches {#replacing-matches .r4ds-section}
#### Exercise 14.4.4.1 {.unnumbered .exercise data-number="14.4.4.1"}
<div class="question">
Replace all forward slashes in a string with backslashes.
</div>
<div class="answer">
```{r}
str_replace_all("past/present/future", "/", "\\\\")
```
</div>
#### Exercise 14.4.4.2 {.unnumbered .exercise data-number="14.4.4.2"}
<div class="question">
Implement a simple version of `str_to_lower()` using `replace_all()`.
</div>
<div class="answer">
```{r}
replacements <- c("A" = "a", "B" = "b", "C" = "c", "D" = "d", "E" = "e",
"F" = "f", "G" = "g", "H" = "h", "I" = "i", "J" = "j",
"K" = "k", "L" = "l", "M" = "m", "N" = "n", "O" = "o",
"P" = "p", "Q" = "q", "R" = "r", "S" = "s", "T" = "t",
"U" = "u", "V" = "v", "W" = "w", "X" = "x", "Y" = "y",
"Z" = "z")
lower_words <- str_replace_all(words, pattern = replacements)
head(lower_words)
```
</div>
#### Exercise 14.4.4.3 {.unnumbered .exercise data-number="14.4.4.3"}
<div class="question">
Switch the first and last letters in `words`. Which of those strings are still words?
</div>
<div class="answer">
First, make a vector of all the words with first and last letters swapped,
```{r}
swapped <- str_replace_all(words, "^([A-Za-z])(.*)([A-Za-z])$", "\\3\\2\\1")
```
Next, find what of "swapped" is also in the original list using the function `intersect()`,
```{r}
intersect(swapped, words)
```
Alternatively, the regex can be written using the POSIX character class for letter (`[[:alpha:]]`):
```{r}
swapped2 <- str_replace_all(words, "^([[:alpha:]])(.*)([[:alpha:]])$", "\\3\\2\\1")
intersect(swapped2, words)
```
</div>
### Splitting {#splitting .r4ds-section}
#### Exercise 14.4.5.1 {.unnumbered .exercise data-number="14.4.5.1"}
<div class="question">
Split up a string like `"apples, pears, and bananas"` into individual components.
</div>
<div class="answer">
```{r}
x <- c("apples, pears, and bananas")
str_split(x, ", +(and +)?")[[1]]
```
</div>
#### Exercise 14.4.5.2 {.unnumbered .exercise data-number="14.4.5.2"}
<div class="question">
Why is it better to split up by `boundary("word")` than `" "`?
</div>
<div class="answer">
Splitting by `boundary("word")` is a more sophisticated method to split a string into words.
It recognizes non-space punctuation that splits words, and also removes punctuation while retaining internal non-letter characters that are parts of the word, e.g., "can't"
See the [ICU website](http://userguide.icu-project.org/boundaryanalysis) for a description of the set of rules that are used to determine word boundaries.
Consider this sentence from the official [Unicode Report on word boundaries](http://www.unicode.org/reports/tr29/#Word_Boundaries),
```{r}
sentence <- "The quick (“brown”) fox can’t jump 32.3 feet, right?"
```
Splitting the string on spaces considers will group the punctuation with the words,