-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise-sheet-6.Rmd
449 lines (241 loc) · 7.66 KB
/
exercise-sheet-6.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
---
title: "Exercise sheet 6: Proteins & Translation"
---
---------------------------------
# Exercise 1 - The genetic code
The standard genetic code describes how 64 possible codons encode 20 amino
acids and the stop translation signal. It enables DNA-encoded mRNA to be translated into amino acid sequences
and is common to all living organisms on Earth.
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="70%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-6/Aminoacids_table.svg")
```
:::
::::
:::: {#explaining .message-box }
::: {#note-exp .note-header}
```{r, include=knitr::is_html_output(), echo=FALSE,}
knitr::include_graphics("figures/infoicon.svg")
```
**Note**
:::
::: {#note-exp .note-body}
Above you can see the RNA codon table (or "Code-Sonne"). It can be used to translate a sequence of
nucleotide triplets into a sequence of amino acids. The tabe is read from the inside to the outside.
e.g. the triplet `AUG` would translate to Methionine (the start codon).
:::
::::
### 1a)
::: {.question data-latex=""}
Which aminoacid is encoded by the codon **UAC**?
:::
#### {.tabset}
##### Hide
##### Hint : Possible Answers
- [ ] Histidine
- [ ] Proline
- [ ] Tyrosine
##### Solution
- [ ] Histidine
- [ ] Proline
- [x] Tyrosine
#### {-}
### 1b)
::: {.question data-latex=""}
How many codons encode the aminoacid Valine?
:::
#### {.tabset}
##### Hide
##### Hint : Possible Answers
- [ ] 4
- [ ] 2
- [ ] 3
##### Solution
::: {.answer data-latex=""}
- [x] 4
- [ ] 2
- [ ] 3
:::
#### {-}
### 1c)
Which aminoacid sequence is encoded by the following codons?
```
AUG-UGC-CUU-ACU-AAA-AGU-CGU-CAU-GAC-GAG-CUG-UAC-GGG-UGA
```
#### {.tabset}
##### Hide
##### Hint : Possible Answers
- [ ] Met-Cys-Leu-Trp-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
- [ ] Met-Trp-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
- [ ] Met-Cys-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
##### Solution
- [ ] Met-Cys-Leu-Trp-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
- [ ] Met-Trp-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
- [x] Met-Cys-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
#### {-}
# Exercise 2 - Protein structures
### 2a)
Name the parts corresponding to the figure below
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="50%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-6/sheet6-exercise1-aminoacid.svg")
```
:::
::::
#### {.tabset}
##### Hide
##### Hint
The Names are:
alpha carbon amino group, carboxyl group and side chain.
##### Solution
A. amino group
B. side chain
C. alpha carbon
D. carboxyl group
#### {-}
### 2b)
Select the peptide bound in the following dipeptide.
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="50%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-6/sheet6-exercise1-peptidebond.svg")
```
:::
::::
#### {.tabset}
##### Hide
##### Hint
A peptide bond is an amide type of covalent chemical bond linking two consecutive
alpha-amino acids via the carbon atom nr. 1 of the first and the nitrogen atom nr 2 of the second amino acid.
##### Solution
A peptide bond is an amide type of covalent chemical bond linking two consecutive
alpha-amino acids via the carbon atom nr. 1 of the first and the nitrogen atom nr 2 of the second amino acid.
**B**
#### {-}
### 2c)
The 3D structure of a protein is very important for its function.
Name the structure types in the figure below.
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="100%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-6/sheet6-exercise1-structures.svg")
```
:::
::::
#### {.tabset}
##### Hide
##### Hint
Match the names
- primary structure
- secondary structure
- tertiary structure
- quaternary structrue
- alpha-helix
- beta-sheet. Note that can be multiple correct options.
##### Solution
A. primary structure
B. secondary structure, beta sheet
C. secondary structure, alpha helix
D. tertiary structure
E. quaternary structure
#### {-}
# Exercise 3 - What are enzymes?
Enzymes are important molecules because they can substantially speed up chemical
reactions and enhance their specificity. They are sometimes referred to as
biocatalysts. Catalysts are compounds that influence chemical reactions
being used up as a result. In other words, they are reusable. A single enzyme
molecule processes about 100.000 to 5 million molecules every minute.
Shortly explain the function of the further mentioned enzymes regarding their role in
prokaryotic translation or transcription
#### {.tabset}
### 3a)
DNA Polymerase III
#### {.tabset}
##### Hide
##### Solution
DNA Polymerase III is responsible for bacterial chromosomal DNA replication, along with the helicase and primase, at the replication fork.
#### {-}
### 3b)
DNA Ligase
#### {.tabset}
##### Hide
##### Solution
The DNA Ligase catalyze the formation of a phosphodiester bond between the
5'-P group of one single DNA strand with the adjacent 3'-OH group of another chain.
#### {-}
### 3c)
RNA Polymerase
#### {.tabset}
##### Hide
##### Solution
RNA Polymerases are enzymes responsible for copying a DNA sequence into an
RNA sequence, during the process of transcription.
#### {-}
### 3d)
RNAse H
#### {.tabset}
##### Hide
##### Solution
Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that
form during replication and repair and which could lead to DNA instability if they were not processed.
#### {-}
### 3e)
DNA Helicase
#### {.tabset}
##### Hide
##### Solution
DNA Helicases are enzymes that are able to unwind DNA by the use of the
energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms.
#### {-}
### 3f)
DNA Primase
#### {.tabset}
##### Hide
##### Solution
DNA primase catalyses the synthesis of short RNA molecules used as primers for the DNA polymerase during DNA replication
#### {-}
# Exercise 4 - The RCSB Protein Database - PDB
Protein structures are hard to resolve. Therefore, identified protein structures
are stored in according databases to enable a fast access and to gather all
data associated. An example is the RCSB Protein Data Base (PDB).
::::{#img1-p .extra-m}
::: {#img3 .tutorial-img}
```{r, echo=FALSE, out.width="100%", fig.align='center', include=knitr::is_html_output()}
knitr::include_graphics("figures/sheet-6/sheet6-exercise7-protein.gif")
```
*Lapinaite, A., Knott, G. J., Palumbo, C. M., Lin-Shiao, E., Richter, M. F., Zhao, K. T., ... & Doudna, J. A. (2020). DNA capture by a CRISPR-Cas9–guided adenine base editor. Science, 369(6503), 566-571.*
:::
::::
Access the protein information of the above shown protein SpCas9 with PDB-ID 6VPC and answer the following questions:
https://www.rcsb.org/
### 4a)
From which organism is this protein?
#### {.tabset}
##### Hide
##### Solution
*Streptococcus pyogenes* and *Escherichia coli*
:::: {#explaining .message-box }
::: {#note-exp .note-header}
```{r, include=knitr::is_html_output(), echo=FALSE,}
knitr::include_graphics("figures/infoicon.svg")
```
**Note**
:::
::: {#note-exp .note-body}
This is an artificially designed Protein containing the CRISPR-associated endonuclease Cas9
from *Streptococcus pyogenes* and the t-RNA adenine deaminase A v8e (TadA-8e) from
*Escherichia coli*.
:::
::::
#### {-}
### 4b)
How many amino acids does this protein consist of?
#### {.tabset}
##### Hide
##### Solution
The Cas9 subunit has $1361$ aminoacids, whilst the deaminase consists of $227$
amino acids.
$1361 + 227 = 1588$
#### {-}