-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathneedleman_wunsch.js
160 lines (132 loc) · 5.23 KB
/
needleman_wunsch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*
University of Freiburg WS 2017/2018
Chair for Bioinformatics
Supervisor: Martin Raden
Author: Alexander Mattheis
*/
"use strict";
/**
* Defines tasks after page-loading.
*/
$(document).ready(function () {
if (loaded === ALGORITHMS.NEEDLEMAN_WUNSCH) { // to avoid self execution on a script import
needlemanWunsch.startNeedlemanWunsch();
loaded = ALGORITHMS.NONE;
}
});
(function () { // namespace
// public methods
namespace("needlemanWunsch", startNeedlemanWunsch, NeedlemanWunsch);
// instances
var alignmentInstance;
var needlemanWunschInstance;
/**
* Function managing objects.
*/
function startNeedlemanWunsch() {
var linearAlignmentInterface = new interfaces.linearAlignmentInterface.LinearAlignmentInterface();
linearAlignmentInterface.startLinearAlignmentAlgorithm(NeedlemanWunsch, ALGORITHMS.NEEDLEMAN_WUNSCH);
}
/*---- ALGORITHM ----*/
/**
* Computes the optimal, global alignment.
* @constructor
* @augments Alignment
* @see https://doi.org/10.1016/0022-2836(70)90057-4
*
* Needleman, Saul B., and Christian D. Wunsch.
* "A general method applicable to the search for similarities in the amino acid sequence of two proteins."
* Journal of molecular biology 48.3 (1970): 443-453.
*/
function NeedlemanWunsch() {
needlemanWunschInstance = this;
// variables
this.type = ALGORITHMS.NEEDLEMAN_WUNSCH;
this.numberOfTracebacks = 0;
// inheritance
alignmentInstance = new bases.alignment.Alignment(this);
this.setInput = alignmentInstance.setLinearAlignmentInput;
this.compute = alignmentInstance.compute;
this.getOutput = alignmentInstance.getOutput;
this.setIO = alignmentInstance.setIO;
// public class methods
this.initializeMatrix = initializeMatrix;
this.computeMatrixAndScore = computeMatrixAndScore;
this.recursionFunction = recursionFunction;
this.computeTraceback = computeTraceback;
this.getSuperclass = getSuperclass;
}
// methods
/**
* Initializes the matrix.
* @augments Alignment.initializeMatrix()
*/
function initializeMatrix() {
var inputData = alignmentInstance.getInput();
var outputData = alignmentInstance.getOutput();
// initialize left upper corner
outputData.matrix[0][0] = 0;
// initialize left matrix border
for (var i = 1; i < inputData.matrixHeight; i++)
outputData.matrix[i][0] = outputData.matrix[i - 1][0] + inputData.deletion;
// initialize upper matrix border
for (var j = 1; j < inputData.matrixWidth; j++)
outputData.matrix[0][j] = outputData.matrix[0][j - 1] + inputData.insertion;
}
/**
* Computes the matrix by using the recursion function and the score.
* @override Alignment.computeMatrixAndScore()
*/
function computeMatrixAndScore() {
var inputData = alignmentInstance.getInput();
var outputData = alignmentInstance.getOutput();
// going through every matrix cell
for (var i = 1; i < inputData.matrixHeight; i++) {
var aChar = inputData.sequenceA[i - 1];
for (var j = 1; j < inputData.matrixWidth; j++) {
var bChar = inputData.sequenceB[j - 1];
outputData.matrix[i][j] = alignmentInstance.recursionFunction(aChar, bChar, i, j);
}
}
// score is stored in the right bottom cell
outputData.score = outputData.matrix[inputData.matrixHeight - 1][inputData.matrixWidth - 1];
}
/**
* Computing maximum or minimum of the three input values to compute the cell score.
* If the type of calculation is similarity,
* the maximum will be computed and else the minimum.
* @param diagonalValue {number} - First input value.
* @param upValue {number} - Second input value.
* @param leftValue {number} - Third input value.
* @return {number} - Maximum or minimum.
*/
function recursionFunction(diagonalValue, upValue, leftValue) {
var inputData = alignmentInstance.getInput();
var value;
if (inputData.calculationType === ALIGNMENT_TYPES.DISTANCE)
value = Math.min(diagonalValue, upValue, leftValue);
else // inputData.calculationType === ALIGNMENT_TYPES.SIMILARITY
value = Math.max(diagonalValue, upValue, leftValue);
return value;
}
/**
* Initializes the traceback.
* @override Alignment.computeTraceback()
*/
function computeTraceback() {
needlemanWunschInstance.numberOfTracebacks = 0;
var inputData = alignmentInstance.getInput();
var outputData = alignmentInstance.getOutput();
var lowerRightCorner = new bases.alignment.Vector(inputData.matrixHeight - 1, inputData.matrixWidth - 1);
outputData.moreTracebacks = false;
outputData.tracebackPaths =
alignmentInstance.getGlobalTraces([lowerRightCorner], inputData, outputData, -1, alignmentInstance.getNeighboured);
}
/**
* Returns the superclass instance.
* @return {Object} - Superclass instance.
*/
function getSuperclass() {
return alignmentInstance;
}
}());