-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_fea.py
54 lines (43 loc) · 1.88 KB
/
get_fea.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from Teacher.dino import get_dino_model
from matplotlib import pyplot as plt
import os
from tqdm import tqdm
import torch
from PIL import Image
import torchvision
import argparse
PIL2tensor = torchvision.transforms.ToTensor()
device = 'cuda:0'
def main(scene, dinopath, prefixpath, savepath):
# 0. set up
dino_teacher = get_dino_model(model_name = 'dino', model_path = dinopath, device = device)
dir = os.path.join(prefixpath, scene, 'images_8')
images_path = []
print(dir)
if not os.path.exists(dir):
raise IOError(f"{dir} is not exist.")
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
images_path.append(path)
Dataset = []
for img_path in tqdm(images_path):
img = Image.open(img_path).convert('RGB')
emb = dino_teacher.extract_features(img, upsample = True, reduce_dim = 64)
emb = emb.cpu().detach()
Dataset.append(emb)
# convert dataset to tensor
Dataset = torch.stack(Dataset, dim=0)
# save dataset
if not os.path.exists(savepath):
os.makedirs(savepath)
savepath = os.path.join(savepath, 'DINO_'+scene+'_64.pt')
torch.save(Dataset, savepath)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Get features from DINO')
parser.add_argument('--scene', type=str, required=True, help='scene name')
parser.add_argument('--dinopath', type=str, default= './pre_trained_models/dino_vitbase8_pretrain.pth', help='path to DINO model')
parser.add_argument('--prefixpath', type=str, default= './Dataset/nerf_llff_data', help='path to dataset')
parser.add_argument('--savepath', type=str, default= './Dataset/nerf_llff_data/fea', help='path to save features')
args = parser.parse_args()
main(args.scene, args.dinopath, args.prefixpath, args.savepath)