-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathsimple_mnist_starter.py
229 lines (199 loc) · 7.84 KB
/
simple_mnist_starter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""
(C) Copyright 2021 IBM Corp.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Created on June 30, 2021
===============================
The most minimal MNIST classifier implementation that demonstrate end to end training using Fuse that we could make.
There is a lot more that one could do on top of this, including inference, evaluation, model checkpointing, etc. But
the goal of this script is simply to train a classifier and show how to wrap a regular pytorch model so it can be
trained "fuse" style. Meaning it accesses data using keys to a batch_dict. It also demonstrates how easy it is to
load datasets from fuse.
"""
import copy
from typing import Any, Optional, OrderedDict, Tuple
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torch.optim as optim
from jsonargparse import CLI
from torch.utils.data import DistributedSampler
from torch.utils.data.dataloader import DataLoader
from fuse.data.utils.collates import CollateDefault
from fuse.data.utils.samplers import BatchSamplerDefault
from fuse.dl.lightning.pl_module import LightningModuleDefault
from fuse.dl.losses.loss_default import LossDefault
from fuse.dl.models.model_wrapper import ModelWrapSeqToDict
from fuse.eval.metrics.classification.metrics_classification_common import (
MetricAccuracy,
)
from fuse.eval.metrics.classification.metrics_thresholding_common import (
MetricApplyThresholds,
)
from fuse_examples.imaging.classification.mnist import lenet
from fuseimg.datasets.mnist import MNIST
def perform_softmax(logits: Any) -> Tuple[torch.Tensor, torch.Tensor]:
cls_preds = F.softmax(logits, dim=1)
return logits, cls_preds
## Model Definition #####################################################
class FuseLitLenet(LightningModuleDefault):
def __init__(
self, model_dir: Optional[str], save_model: bool, lr: float, weight_decay: float
):
"""
Initialize the model. We inheret from LightningModuleDefault to get functions necessary for lightning trainer.
We also wrap the torch model so that it can train using keys from the fuse NDict batch dict.
:param model_dir: location for checkpoints and logs.
:param lr: learning rate for optimizer
:param weight_decay: weight decay for Adam optimizer. This is a form of regularization that penalizes for learning large weights.
"""
# wrap basic torch model to automatically read inputs from batch_dict and save its outputs to batch_dict
model = ModelWrapSeqToDict(
model=lenet.LeNet(),
model_inputs=["data.image"],
post_forward_processing_function=perform_softmax,
model_outputs=[
"model.logits.classification",
"model.output.classification",
],
)
# losses and metrics to track
losses = {
"cls_loss": LossDefault(
pred="model.logits.classification",
target="data.label",
callable=F.cross_entropy,
weight=1.0,
),
}
train_metrics = OrderedDict(
[
(
"operation_point",
MetricApplyThresholds(pred="model.output.classification"),
), # will apply argmax
(
"accuracy",
MetricAccuracy(
pred="results:metrics.operation_point.cls_pred",
target="data.label",
),
),
]
)
validation_metrics = copy.deepcopy(train_metrics) # same as train metrics
# optimizer and learning rate scheduler
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
lr_sch_config = dict(
scheduler=lr_scheduler, monitor="validation.losses.total_loss"
)
optimizers_and_lr_schs = dict(optimizer=optimizer, lr_scheduler=lr_sch_config)
# initialize LightningModuleDefault with our module, losses, etc so that we can use the functions of LightningModuleDefault
super().__init__(
model_dir=model_dir,
save_model=save_model,
model=model,
losses=losses,
train_metrics=train_metrics,
validation_metrics=validation_metrics,
optimizers_and_lr_schs=optimizers_and_lr_schs,
)
## Datamodule ###########################################################
class MNISTDataModule(pl.LightningDataModule):
def __init__(
self,
data_dir: str,
batch_size: int,
num_workers: int,
distributed: bool,
):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.distributed = distributed
def setup(self, stage: str) -> None:
self.mnist_train = MNIST.dataset(self.data_dir, train=True)
self.mnist_val = MNIST.dataset(self.data_dir, train=False)
def train_dataloader(self) -> DataLoader:
sampler = DistributedSampler(self.mnist_train) if self.distributed else None
batch_sampler = BatchSamplerDefault(
sampler=sampler,
dataset=self.mnist_train,
mode="approx",
balanced_class_name="data.label",
num_balanced_classes=10,
batch_size=self.batch_size,
balanced_class_weights=None,
)
train_loader = DataLoader(
dataset=self.mnist_train,
batch_sampler=batch_sampler,
collate_fn=CollateDefault(),
num_workers=self.num_workers,
)
return train_loader
def val_dataloader(self) -> DataLoader:
val_loader = DataLoader(
self.mnist_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
collate_fn=CollateDefault(),
)
return val_loader
## Training #############################################################
def run_train(
data_dir: str = "_examples/mnist",
batch_size: int = 100,
num_workers: int = 8,
num_epochs: int = 3,
num_devices: int = 1,
num_nodes: int = 1,
accelerator: str = "gpu",
ckpt_path: Optional[str] = None,
lr: float = 1e-4,
weight_decay: float = 0.001,
) -> None:
# initialize model
model = FuseLitLenet(
model_dir=None,
save_model=False,
lr=lr,
weight_decay=weight_decay,
)
# initialize data module
distributed = True if num_devices > 1 else None
mnist_dm = MNISTDataModule(
data_dir=data_dir,
batch_size=batch_size,
num_workers=num_workers,
distributed=distributed,
)
# A workaround to support multiple GPUs with a custom batch_sampler for both Lightning versions
# see: https://lightning.ai/pages/releases/2.0.0/#sampler-replacement
kwargs = {}
if distributed:
if pl.__version__[0] == "2":
kwargs["use_distributed_sampler"] = False
else:
kwargs["replace_sampler_ddp"] = False
# create pl trainer
pl_trainer = pl.Trainer(
max_epochs=num_epochs,
accelerator=accelerator,
devices=num_devices,
num_nodes=num_nodes,
**kwargs,
)
# train model
pl_trainer.fit(model, mnist_dm)
if __name__ == "__main__":
CLI(run_train)