-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_pygotm.pyx
90 lines (79 loc) · 5.46 KB
/
_pygotm.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# cython: language_level=3
# cython: profile=True
cimport cython
import tempfile
import atexit
import os
cimport numpy
import numpy
cdef extern void initialize(int nlev, const char* nml_file, const char* yaml_file, double** ptke, double** peps, double** pL, double** pnum, double** pnuh) nogil
cdef extern void finalize2() nogil
cdef extern void calculate(int nlev, double dt, const double* h, double D, double taus, double taub, double z0s, double z0b, const double* SS, const double* NN) nogil
cdef extern void calculate_3d(int nx, int nz, int nz, int istart, int istop, int jstart, int jstop, double dt, const int* mask, const double* h3d, const double* D, const double* u_taus, const double* u_taub, const double* z0s, const double* z0b, const double* NN, const double* SS, double* tke, double* eps, double* L, double* num, double* nuh)
cdef extern void diff(int nlev, double dt, double cnpar, int posconc, const double* h, int Bcup, int Bcdw, double Yup, double Ydw, const double* nuY, const double* Lsour, const double* Qsour, const double* Taur, const double* Yobs, double* Y)
cdef extern void redirect_output(const char* stdout_file, const char* stderr_file) nogil
cdef extern void close_redirected_output() nogil
with tempfile.NamedTemporaryFile(delete=False) as f1, tempfile.NamedTemporaryFile(delete=False) as f2:
stdout_path = f1.name
stderr_path = f2.name
redirect_output(stdout_path.encode('ascii'), stderr_path.encode('ascii'))
stdout = open(stdout_path)
stderr = open(stderr_path)
def cleanup():
finalize2()
close_redirected_output()
stdout.close()
stderr.close()
os.remove(stdout_path)
os.remove(stderr_path)
atexit.register(cleanup)
cdef class Mixing:
cdef readonly numpy.ndarray tke, eps, L, num, nuh
cdef double* pnuh
def __init__(self, int nlev, bytes nml_path=b'', bytes yaml_path=b''):
cdef double* ptke
cdef double* peps
cdef double* pL
cdef double* pnum
cdef double* pnuh
initialize(nlev, nml_path, yaml_path, &ptke, &peps, &pL, &pnum, &pnuh)
self.tke = numpy.asarray(<double[:nlev+1:1]> ptke)
self.eps = numpy.asarray(<double[:nlev+1:1]> peps)
self.L = numpy.asarray(<double[:nlev+1:1]> pL)
self.num = numpy.asarray(<double[:nlev+1:1]> pnum)
self.nuh = numpy.asarray(<double[:nlev+1:1]> pnuh)
self.pnuh = pnuh
def turbulence(self, double dt, const double[::1] h not None, double D, double u_taus, double u_taub, double z0s, double z0b, const double[::1] SS not None, const double[::1] NN not None):
assert SS.shape[0] == NN.shape[0], 'Length of NN (%i) and SS (%i) should be identical.' % (NN.shape[0], SS.shape[0])
assert h.shape[0] == NN.shape[0], 'Length of h (%i) should match that of NN and SS (%i).' % (h.shape[0], SS.shape[0])
calculate(<int>h.shape[0] - 1, dt, &h[0], D, u_taus, u_taub, z0s, z0b, &SS[0], &NN[0])
def turbulence_3d(self, int nx, int ny, int nz, int istart, int istop, int jstart, int jstop, double dt, const int[:, ::1] mask not None,
const double[:, :, ::1] h not None, const double[:, ::1] D not None, const double[:, ::1] u_taus not None, const double[:, ::1] u_taub not None,
const double[:, ::1] z0s not None, const double[:, ::1] z0b not None, const double[:, :, ::1] NN not None, const double[:, :, ::1] SS not None,
double[:, :, ::1] tke not None, double[:, :, ::1] eps not None, double[:, :, ::1] L not None, double[:, :, ::1] num not None, double[:, :, ::1] nuh not None):
assert mask.shape[1] == nx and mask.shape[0] == ny
assert h.shape[2] == nx and h.shape[1] == ny and h.shape[0] == nz
assert D.shape[1] == nx and D.shape[0] == ny
assert u_taus.shape[1] == nx and u_taus.shape[0] == ny
assert u_taub.shape[1] == nx and u_taub.shape[0] == ny
assert z0s.shape[1] == nx and z0s.shape[0] == ny
assert z0b.shape[1] == nx and z0b.shape[0] == ny
assert NN.shape[2] == nx and NN.shape[1] == ny and NN.shape[0] == nz + 1
assert SS.shape[2] == nx and SS.shape[1] == ny and SS.shape[0] == nz + 1
assert tke.shape[2] == nx and tke.shape[1] == ny and tke.shape[0] == nz + 1
assert eps.shape[2] == nx and eps.shape[1] == ny and eps.shape[0] == nz + 1
assert L.shape[2] == nx and L.shape[1] == ny and L.shape[0] == nz + 1
assert num.shape[2] == nx and num.shape[1] == ny and num.shape[0] == nz + 1
assert nuh.shape[2] == nx and nuh.shape[1] == ny and nuh.shape[0] == nz + 1
# note we convert from 0-based start indices (Python/C) to 1-based start indices (Fortran)
# stop indices are already fine because Python uses the first index that is excluded, whereas Fortran uses the last index that is included. These happen to be the same.
calculate_3d(nx, ny, nz, istart + 1, istop, jstart + 1, jstop, dt, &mask[0,0], &h[0,0,0], &D[0,0], &u_taus[0,0], &u_taub[0,0], &z0s[0,0], &z0b[0,0], &NN[0,0,0], &SS[0,0,0],
&tke[0,0,0], &eps[0,0,0], &L[0,0,0], &num[0,0,0], &nuh[0,0,0])
def diffuse(self, double dt, const double[::1] h not None, double[::1] Y not None):
cdef double[::1] Lsour, Qsour, Taur, Yobs
assert h.shape[0] == Y.shape[0]
assert h.shape[0] <= self.nuh.shape[0]
Lsour = numpy.zeros_like(h)
Qsour = numpy.zeros_like(h)
Taur = numpy.full_like(h, 1e15)
diff(<int>h.shape[0] - 1, dt, 1., 0, &h[0], 1, 1, 0., 0., self.pnuh, &Lsour[0], &Qsour[0], &Taur[0], &Y[0], &Y[0])