Skip to content

Latest commit

 

History

History
94 lines (71 loc) · 3.12 KB

README.md

File metadata and controls

94 lines (71 loc) · 3.12 KB

DPT for Image Classification


Here is our code for ImageNet classification. Please check our paper (coming soon) for detailed information.

Instructions

Environment

We develop our model under cuda 10.1, pytorch 1.7.1 and timm 0.3.2. Pytorch with other versions may also work. We advise you to prepare your environment with conda.

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
pip install timm==0.3.2

You may clone our repo and compile the provided operator.

git clone https://github.com/CASIA-IVA-Lab/DPT.git
cd ./ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Data Preparation

We follow the conventional way to prepare the ImangeNet dataset.

The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Evaluation

To evaluate a pretrained model on ImageNet val on a single gpus:

python -m torch.distributed.launch --nproc_per_node 1 --use_env main.py --eval --model $MODEL_NAME --data-path $DATA_PATH --resume $CKPT_PATH

Or with multiple gpus:

python -m torch.distributed.launch --nproc_per_node $NUM_GPUS --use_env main.py --eval --dist-eval --model $MODEL_NAME --data-path $DATA_PATH --resume $CKPT_PATH

For example, use 8 gpu to test our pretrained DPT-Small model.

python -m torch.distributed.launch --nproc_per_node 8 --use_env main.py --eval --dist-eval --model dpt_tiny --data-path $DATA_PATH --resume dpt_tiny.pth

which should give

* Acc@1 80.954 Acc@5 95.388 loss 0.846
Accuracy of the network on the 50000 test images: 81.0%

Training

To train DPT-Small on ImageNet on a single node with 8 gpus for 300 epochs run:

MODEL_NAME=dpt_small
DATA_PATH=/path/to/imagenet
OUTPUT_PATH=/path/to/output

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py\
 --model $MODEL_NAME --batch-size 128 --dist-eval --test_interval 5\
 --data-path $DATA_PATH --output_dir $OUTPUT_PATH

Model Zoo

Method #Params (M) FLOPs(G) Acc@1 Model
DPT-Tiny 15.2 2.1 77.4 Google Drive
DPT-Small 26.4 4.0 81.0 Google Drive
DPT-Medium 46.1 6.9 81.9 Google Drive

You can also obtain the ImageNet1k pre-trained model from BaiduNetdisk. Password for extract is DPTs.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.