-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathex33.hpp
403 lines (351 loc) · 12.6 KB
/
ex33.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// MFEM Example 33 - Serial/Parallel Shared Code
// (Implementation of the AAA algorithm)
//
// Here, we implement the triple-A algorithm [1] for the rational approximation
// of complex-valued functions,
//
// p(z)/q(z) ≈ f(z).
//
// In this file, we always assume f(z) = z^{-α}. The triple-A algorithm
// provides a robust, accurate approximation in rational barycentric form.
// This representation must be transformed into a partial fraction
// representation in order to be used to solve a spectral FPDE.
//
// More specifically, we first expand the numerator in terms of the zeros of
// the rational approximation,
//
// p(z) ∝ Π_i (z - z_i),
//
// and expand the denominator in terms of the poles of the rational
// approximation,
//
// q(z) ∝ Π_i (z - p_i).
//
// We then use these zeros and poles to derive the partial fraction expansion
//
// f(z) ≈ p(z)/q(z) = Σ_i c_i / (z - p_i).
//
// [1] Nakatsukasa, Y., Sète, O., & Trefethen, L. N. (2018). The AAA algorithm
// for rational approximation. SIAM Journal on Scientific Computing, 40(3),
// A1494-A1522.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
using namespace mfem;
/** RationalApproximation_AAA: compute the rational approximation (RA) of data
@a val [in] at the set of points @a pt [in].
@param[in] val Vector of data values
@param[in] pt Vector of sample points
@param[in] tol Relative tolerance
@param[in] max_order Maximum number of terms (order) of the RA
@param[out] z Support points of the RA in rational barycentric form
@param[out] f Data values at support points @a z
@param[out] w Weights of the RA in rational barycentric form
See pg. A1501 of Nakatsukasa et al. [1]. */
void RationalApproximation_AAA(const Vector &val, const Vector &pt,
Array<real_t> &z, Array<real_t> &f, Vector &w,
real_t tol, int max_order)
{
// number of sample points
int size = val.Size();
MFEM_VERIFY(pt.Size() == size, "size mismatch");
// Initializations
Array<int> J(size);
for (int i = 0; i < size; i++) { J[i] = i; }
z.SetSize(0);
f.SetSize(0);
DenseMatrix C, Ctemp, A, Am;
// auxiliary arrays and vectors
Vector f_vec;
Array<real_t> c_i;
// mean of the value vector
Vector R(val.Size());
real_t mean_val = val.Sum()/size;
for (int i = 0; i<R.Size(); i++) { R(i) = mean_val; }
for (int k = 0; k < max_order; k++)
{
// select next support point
int idx = 0;
real_t tmp_max = 0;
for (int j = 0; j < size; j++)
{
real_t tmp = abs(val(j)-R(j));
if (tmp > tmp_max)
{
tmp_max = tmp;
idx = j;
}
}
// Append support points and data values
z.Append(pt(idx));
f.Append(val(idx));
// Update index vector
J.DeleteFirst(idx);
// next column in Cauchy matrix
Array<real_t> C_tmp(size);
for (int j = 0; j < size; j++)
{
C_tmp[j] = 1.0/(pt(j)-pt(idx));
}
c_i.Append(C_tmp);
int h_C = C_tmp.Size();
int w_C = k+1;
C.UseExternalData(c_i.GetData(),h_C,w_C);
Ctemp = C;
f_vec.SetDataAndSize(f.GetData(),f.Size());
Ctemp.InvLeftScaling(val);
Ctemp.RightScaling(f_vec);
A.SetSize(C.Height(), C.Width());
Add(C,Ctemp,-1.0,A);
A.LeftScaling(val);
int h_Am = J.Size();
int w_Am = A.Width();
Am.SetSize(h_Am,w_Am);
for (int i = 0; i<h_Am; i++)
{
int ii = J[i];
for (int j = 0; j<w_Am; j++)
{
Am(i,j) = A(ii,j);
}
}
#ifdef MFEM_USE_LAPACK
DenseMatrixSVD svd(Am,'N','A');
svd.Eval(Am);
DenseMatrix &v = svd.RightSingularvectors();
v.GetRow(k,w);
#else
mfem_error("Compiled without LAPACK");
#endif
// N = C*(w.*f); D = C*w; % numerator and denominator
Vector aux(w);
aux *= f_vec;
Vector N(C.Height()); // Numerator
C.Mult(aux,N);
Vector D(C.Height()); // Denominator
C.Mult(w,D);
R = val;
for (int i = 0; i<J.Size(); i++)
{
int ii = J[i];
R(ii) = N(ii)/D(ii);
}
Vector verr(val);
verr-=R;
if (verr.Normlinf() <= tol*val.Normlinf()) { break; }
}
}
/** ComputePolesAndZeros: compute the @a poles [out] and @a zeros [out] of the
rational function f(z) = C p(z)/q(z) from its ration barycentric form.
@param[in] z Support points in rational barycentric form
@param[in] f Data values at support points @a z
@param[in] w Weights in rational barycentric form
@param[out] poles Array of poles (roots of p(z))
@param[out] zeros Array of zeros (roots of q(z))
@param[out] scale Scaling constant in f(z) = C p(z)/q(z)
See pg. A1501 of Nakatsukasa et al. [1]. */
void ComputePolesAndZeros(const Vector &z, const Vector &f, const Vector &w,
Array<real_t> & poles, Array<real_t> & zeros, real_t &scale)
{
// Initialization
poles.SetSize(0);
zeros.SetSize(0);
// Compute the poles
int m = w.Size();
DenseMatrix B(m+1); B = 0.;
DenseMatrix E(m+1); E = 0.;
for (int i = 1; i<=m; i++)
{
B(i,i) = 1.;
E(0,i) = w(i-1);
E(i,0) = 1.;
E(i,i) = z(i-1);
}
#ifdef MFEM_USE_LAPACK
DenseMatrixGeneralizedEigensystem eig1(E,B);
eig1.Eval();
Vector & evalues = eig1.EigenvaluesRealPart();
for (int i = 0; i<evalues.Size(); i++)
{
if (IsFinite(evalues(i)))
{
poles.Append(evalues(i));
}
}
#else
mfem_error("Compiled without LAPACK");
#endif
// compute the zeros
B = 0.;
E = 0.;
for (int i = 1; i<=m; i++)
{
B(i,i) = 1.;
E(0,i) = w(i-1) * f(i-1);
E(i,0) = 1.;
E(i,i) = z(i-1);
}
#ifdef MFEM_USE_LAPACK
DenseMatrixGeneralizedEigensystem eig2(E,B);
eig2.Eval();
evalues = eig2.EigenvaluesRealPart();
for (int i = 0; i<evalues.Size(); i++)
{
if (IsFinite(evalues(i)))
{
zeros.Append(evalues(i));
}
}
#else
mfem_error("Compiled without LAPACK");
#endif
scale = w * f / w.Sum();
}
/** PartialFractionExpansion: compute the partial fraction expansion of the
rational function f(z) = Σ_i c_i / (z - p_i) from its @a poles [in] and
@a zeros [in].
@param[in] poles Array of poles (same as p_i above)
@param[in] zeros Array of zeros
@param[in] scale Scaling constant
@param[out] coeffs Coefficients c_i */
void PartialFractionExpansion(real_t scale, Array<real_t> & poles,
Array<real_t> & zeros, Array<real_t> & coeffs)
{
int psize = poles.Size();
int zsize = zeros.Size();
coeffs.SetSize(psize);
coeffs = scale;
// Note: C p(z)/q(z) = Σ_i c_i / (z - p_i) results in an system of equations
// where the N unknowns are the coefficients c_i. After multiplying the
// system with q(z), the coefficients c_i can be computed analytically by
// choosing N values for z. Choosing z_j = = p_j diagonalizes the system and
// one can obtain an analytic form for the c_i coefficients. The result is
// implemented in the code block below.
for (int i=0; i<psize; i++)
{
real_t tmp_numer=1.0;
for (int j=0; j<zsize; j++)
{
tmp_numer *= poles[i]-zeros[j];
}
real_t tmp_denom=1.0;
for (int k=0; k<psize; k++)
{
if (k != i) { tmp_denom *= poles[i]-poles[k]; }
}
coeffs[i] *= tmp_numer / tmp_denom;
}
}
/** ComputePartialFractionApproximation: compute a rational approximation (RA)
in partial fraction form, e.g., f(z) ≈ Σ_i c_i / (z - p_i), from sampled
values of the function f(z) = z^{-a}, 0 < a < 1.
@param[in] alpha Exponent a in f(z) = z^-a
@param[in] lmax, npoints f(z) is uniformly sampled @a npoints times in the
interval [ 0, @a lmax ]
@param[in] tol Relative tolerance
@param[in] max_order Maximum number of terms (order) of the RA
@param[out] coeffs Coefficients c_i
@param[out] poles Poles p_i
NOTES: When MFEM is not built with LAPACK support, only @a alpha = 0.33,
0.5, and 0.99 are possible. In this case, if @a alpha != 0.33 and
@a alpha != 0.99, then @a alpha = 0.5 is used by default.
See pg. A1501 of Nakatsukasa et al. [1]. */
void ComputePartialFractionApproximation(real_t & alpha,
Array<real_t> & coeffs, Array<real_t> & poles,
real_t lmax = 1000.,
real_t tol=1e-10, int npoints = 1000,
int max_order = 100)
{
MFEM_VERIFY(alpha < 1., "alpha must be less than 1");
MFEM_VERIFY(alpha > 0., "alpha must be greater than 0");
MFEM_VERIFY(npoints > 2, "npoints must be greater than 2");
MFEM_VERIFY(lmax > 0, "lmin must be greater than 0");
MFEM_VERIFY(tol > 0, "tol must be greater than 0");
bool print_warning = true;
#ifdef MFEM_USE_MPI
if ((Mpi::IsInitialized() && !Mpi::Root())) { print_warning = false; }
#endif
#ifndef MFEM_USE_LAPACK
if (print_warning)
{
mfem::out
<< "\n" << string(80, '=')
<< "\nMFEM is compiled without LAPACK."
<< "\nUsing precomputed values for PartialFractionApproximation."
<< "\nOnly alpha = 0.33, 0.5, and 0.99 are available."
<< "\nThe default is alpha = 0.5.\n" << string(80, '=') << "\n"
<< endl;
}
const real_t eps = std::numeric_limits<real_t>::epsilon();
if (abs(alpha - 0.33) < eps)
{
coeffs = Array<real_t> ({1.821898e+03, 9.101221e+01, 2.650611e+01,
1.174937e+01, 6.140444e+00, 3.441713e+00,
1.985735e+00, 1.162634e+00, 6.891560e-01,
4.111574e-01, 2.298736e-01});
poles = Array<real_t> ({-4.155583e+04, -2.956285e+03, -8.331715e+02,
-3.139332e+02, -1.303448e+02, -5.563385e+01,
-2.356255e+01, -9.595516e+00, -3.552160e+00,
-1.032136e+00, -1.241480e-01});
}
else if (abs(alpha - 0.99) < eps)
{
coeffs = Array<real_t>({2.919591e-02, 1.419750e-02, 1.065798e-02,
9.395094e-03, 8.915329e-03, 8.822991e-03,
9.058247e-03, 9.814521e-03, 1.180396e-02,
1.834554e-02, 9.840482e-01});
poles = Array<real_t> ({-1.069683e+04, -1.769370e+03, -5.718374e+02,
-2.242095e+02, -9.419132e+01, -4.031012e+01,
-1.701525e+01, -6.810088e+00, -2.382810e+00,
-5.700059e-01, -1.384324e-03});
}
else
{
if (abs(alpha - 0.5) > eps)
{
alpha = 0.5;
}
coeffs = Array<real_t>({2.290262e+02, 2.641819e+01, 1.005566e+01,
5.390411e+00, 3.340725e+00, 2.211205e+00,
1.508883e+00, 1.049474e+00, 7.462709e-01,
5.482686e-01, 4.232510e-01, 3.578967e-01});
poles = Array<real_t>({-3.168211e+04, -3.236077e+03, -9.868287e+02,
-3.945597e+02, -1.738889e+02, -7.925178e+01,
-3.624992e+01, -1.629196e+01, -6.982956e+00,
-2.679984e+00, -7.782607e-01, -7.649166e-02});
}
if (print_warning)
{
mfem::out << "=> Using precomputed values for alpha = "
<< alpha << "\n" << std::endl;
}
return;
#else
MFEM_CONTRACT_VAR(print_warning);
#endif
Vector x(npoints);
Vector val(npoints);
real_t dx = lmax / (real_t)(npoints-1);
for (int i = 0; i<npoints; i++)
{
x(i) = dx * (real_t)i;
val(i) = pow(x(i),1.-alpha);
}
// Apply triple-A algorithm to f(x) = x^{1-a}
Array<real_t> z, f;
Vector w;
RationalApproximation_AAA(val,x,z,f,w,tol,max_order);
Vector vecz, vecf;
vecz.SetDataAndSize(z.GetData(), z.Size());
vecf.SetDataAndSize(f.GetData(), f.Size());
// Compute poles and zeros for RA of f(x) = x^{1-a}
real_t scale;
Array<real_t> zeros;
ComputePolesAndZeros(vecz, vecf, w, poles, zeros, scale);
// Remove the zero at x=0, thus, delivering a RA for f(x) = x^{-a}
zeros.DeleteFirst(0.0);
// Compute partial fraction approximation of f(x) = x^{-a}
PartialFractionExpansion(scale, poles, zeros, coeffs);
}