forked from SamStudio8/asklepian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_best_ref.py
112 lines (94 loc) · 4.54 KB
/
get_best_ref.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import sys
import csv
import argparse
from readfq import readfq # thanks heng
parser = argparse.ArgumentParser()
parser.add_argument("--fasta", required=True)
parser.add_argument("--metrics", required=True)
parser.add_argument("--latest", required=False)
parser.add_argument("--out-ls", required=True)
args = parser.parse_args()
# Check paths
if not os.path.isfile(args.fasta):
sys.stderr.write("[FAIL] Could not open FASTA %s.\n" % args.fasta)
sys.exit(1)
if not os.path.isfile(args.metrics):
sys.stderr.write("[FAIL] Could not open Ocarina metrics output %s.\n" % args.metrics)
sys.exit(1)
# Keep track of the last best refs so we can flag if the best ref for a sample
# has changed today
previous_best = {}
if args.latest:
if not os.path.isfile(args.latest):
sys.stderr.write("[FAIL] Could not previous best ref list %s.\n" % args.latest)
sys.exit(1)
with open(args.latest) as latest_fh:
for line in latest_fh:
if line[0] == '[' or line[0] == '#':
continue
fields = line.strip().split('\t')
previous_best[ fields[0] ] = fields[1]
best_qc = {}
n_len_discarded = 0
# Use the metrics from Majora via Ocarina to determine the best sequence
# for each central_sample_id by tracking the FASTA with the fewest N sites.
with open(args.metrics) as ocarina_out_fh:
for row in csv.DictReader(ocarina_out_fh, delimiter='\t'):
fasta_path = os.path.basename(row["fasta_path"])
central_sample_id = row["central_sample_id"]
num_bases = int(row["num_bases"])
pc_acgt = float(row["pc_acgt"])
pc_masked = float(row["pc_masked"])
# Calculate absolute masked bases
num_masked = num_bases * (pc_masked/100.0)
# Remove genomes shorter than 29 Kbp
if num_bases < 29000:
n_len_discarded += 1
continue
if central_sample_id not in best_qc:
# If this is the first genome, assume it is the best
best_qc[central_sample_id] = [num_masked, row["published_name"], fasta_path]
else:
# If the best has more masked sites than the current QC
# swap to the better run
if best_qc[central_sample_id][0] > num_masked:
best_qc[central_sample_id] = [num_masked, row["published_name"], fasta_path]
elif best_qc[central_sample_id][0] == num_masked:
# Use run_name lexo to break tie
if row["run_name"] > best_qc[central_sample_id][1].split(':')[1]:
best_qc[central_sample_id] = [num_masked, row["published_name"], fasta_path]
sys.stderr.write("[NOTE] %s best sequences found. Non-best sequences discarded (for length: %d). Writing FASTA.\n" % (len(best_qc), n_len_discarded))
# Emit all (central_sample_id, best FASTA filename) pairs to stderr
best_published_names = set([])
with open(args.out_ls, 'w') as out_ls_fh:
for central_sample_id in best_qc:
status = 1 # assume new
if best_qc[central_sample_id][2] == previous_best.get(central_sample_id):
status = 0 # unless new best ref matches last best ref
out_ls_fh.write('\t'.join([
central_sample_id,
best_qc[central_sample_id][2],
best_qc[central_sample_id][1],
str(status),
]) + '\n')
# Add this sequence's PAG to the best_published_names set
best_published_names.add( best_qc[central_sample_id][1] )
# Iterate the matched FASTA and print out sequences that have a name in the best_published_names set
seen_best_published_names = set([])
with open(args.fasta) as latest_fasta_fh:
for name, seq, qual in readfq(latest_fasta_fh):
# Apparently I write the names out wrong so that's good
curr_pag = name.split('|')[0].replace('COGUK', 'COG-UK')
central_sample_id = curr_pag.split('/')[1]
if curr_pag in best_published_names:
# Remove deletion chars (https://github.com/COG-UK/dipi-group/issues/38)
seq = seq.replace('-', '')
sys.stdout.write('>%s\n%s\n' % (central_sample_id, seq))
seen_best_published_names.add(curr_pag)
sys.stderr.write("[NOTE] %s best sequences written.\n" % len(seen_best_published_names))
sys.stderr.write("[NOTE] %s best sequences missing.\n" % (len(best_published_names) - len(seen_best_published_names)))
if len(seen_best_published_names) != len(best_published_names):
missing = best_published_names - seen_best_published_names
for pag in missing:
sys.stderr.write("[WARN] Best sequence found for %s but not written\n" % pag)