-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimplementations.py
287 lines (209 loc) · 8.35 KB
/
implementations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
import numpy as np
def mean_squared_error_gd(y, tx, initial_w, max_iters, gamma):
"""The Gradient Descent (GD) algorithm using MSE loss.
Args:
y: numpy array of shape=(N, )
tx: numpy array of shape=(N,D)
initial_w: numpy array of shape=(D, ). The initial guess (or the initialization) for the model parameters
max_iters: a scalar denoting the total number of iterations of GD
gamma: a scalar denoting the stepsize
Returns:
w: model parameters as numpy arrays of shape (D, )
loss: loss mse value (scalar)
"""
# Initialize weights and loss
w = initial_w
loss = compute_loss(y, tx, w, "mse")
for i in range(max_iters):
# compute gradient
grad = compute_gradient(y, tx, w, "mse")
# update w by gradient descent
w = w - gamma * grad
# compute loss
loss = compute_loss(y, tx, w, "mse")
# Display current loss
print("GD iter. {bi}/{ti}: loss={l}".format(bi=i, ti=max_iters - 1, l=loss))
return w, loss
def mean_squared_error_sgd(y, tx, initial_w, max_iters, gamma):
"""The Stochastic Gradient Descent algorithm (SGD) using MSE loss.
Args:
y: numpy array of shape=(N, )
tx: numpy array of shape=(N,D)
initial_w: numpy array of shape=(D, ). The initial guess (or the initialization) for the model parameters
max_iters: a scalar denoting the total number of iterations of SGD
gamma: a scalar denoting the stepsize
Returns:
w: model parameters as numpy arrays of shape (D, )
loss: loss mse value (scalar)
"""
# Initialize weights and loss
w = initial_w
loss = compute_loss(y, tx, w, "mse")
for n_iter in range(max_iters):
for minibatch_y, minibatch_tx in batch_iter(y, tx, batch_size=1, num_batches=1):
# compute gradient
grad = compute_gradient(minibatch_y, minibatch_tx, w, "mse")
# update w through the stochastic gradient update
w = w - gamma * grad
# calculate loss
loss = compute_loss(y, tx, w, "mse")
# Display current loss
print(
"SGD iter. {bi}/{ti}: loss={l}".format(bi=n_iter, ti=max_iters - 1, l=loss)
)
return w, loss
def least_squares(y, tx):
"""Calculate the least squares solution.
returns mse, and optimal weights.
Args:
y: numpy array of shape (N,), N is the number of samples.
tx: numpy array of shape (N,D), D is the number of features.
Returns:
w: model parameters as numpy arrays of shape (D, )
loss: loss mse value (scalar)
"""
w = np.linalg.solve(tx.T @ tx, tx.T @ y)
loss = compute_loss(y, tx, w, "mse")
return w, loss
def ridge_regression(y, tx, lambda_):
"""implement ridge regression.
Args:
y: numpy array of shape (N,), N is the number of samples.
tx: numpy array of shape (N,D), D is the number of features.
lambda_: scalar.
Returns:
w: optimal weights, numpy array of shape(D,), D is the number of features.
loss: loss mse value (scalar)
"""
l = 2 * tx.shape[0] * lambda_ * np.identity(tx.shape[1])
w = np.linalg.solve(tx.T @ tx + l, tx.T @ y)
loss = compute_loss(y, tx, w, "mse")
return w, loss
def logistic_regression(y, tx, initial_w, max_iters, gamma):
"""Logistic regression using GD
Args:
y: numpy array of shape=(N, )
tx: numpy array of shape=(N,D)
initial_w: numpy array of shape=(D, ). The initial guess (or the initialization) for the model parameters
max_iters: a scalar denoting the total number of iterations of SGD
gamma: a scalar denoting the stepsize
Returns:
w: model parameters as numpy arrays of shape (D, )
loss: log-loss value (scalar)
"""
# Initialize weights and loss
w = initial_w
loss = compute_loss(y, tx, w, "log")
for i in range(max_iters):
# compute gradient
grad = compute_gradient(y, tx, w, "log")
# update w through the stochastic gradient update
w = w - gamma * grad
# calculate loss
loss = compute_loss(y, tx, w, "log")
# Display current loss
print("GD iter. {bi}/{ti}: loss={l}".format(bi=i, ti=max_iters - 1, l=loss))
return w, loss
def reg_logistic_regression(y, tx, lambda_, initial_w, max_iters, gamma):
"""Regularized logistic regression using GD
Args:
y: numpy array of shape=(N, )
tx: numpy array of shape=(N,D)
lambda_: scalar.
initial_w: numpy array of shape=(D, ). The initial guess (or the initialization) for the model parameters
max_iters: a scalar denoting the total number of iterations of SGD
gamma: a scalar denoting the stepsize
Returns:
w: model parameters as numpy arrays of shape (D, )
loss: log-loss value (scalar)
"""
# Initialize weights and loss
w = initial_w
loss = compute_loss(y, tx, w, "log")
for i in range(max_iters):
# compute gradient
grad = compute_gradient(y, tx, w, "log", lambda_=lambda_)
# update w through the stochastic gradient update
w = w - gamma * grad
# calculate loss
loss = compute_loss(y, tx, w, "log")
# Display current loss and weights
print("GD iter. {bi}/{ti}: loss={l}".format(bi=i, ti=max_iters - 1, l=loss))
return w, loss
def calculate_mse(e):
"""Calculate the mse for vector e."""
return np.mean(e**2) / 2
def calculate_mae(e):
"""Calculate the mae for vector e."""
return np.mean(np.abs(e))
def calculate_logloss(y_true, y_pred, eps=1e-8):
"""Calculate the logloss"""
return -np.mean(
y_true * np.log(y_pred + eps) + (1 - y_true) * np.log(1 - y_pred + eps)
)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def compute_loss(y, tx, w, loss_type):
"""Calculate the loss using either MSE or MAE.
Args:
y: shape=(N, )
tx: shape=(N,2)
w: shape=(2,). The vector of model parameters.
loss_type: string in ["mae", "mse", "log"] specifying the type of loss to compute
Returns:
the value of the loss (a scalar), corresponding to the input parameters w.
"""
e = y - tx @ w
if loss_type == "mse":
return calculate_mse(e)
elif loss_type == "mae":
return calculate_mae(e)
elif loss_type == "log":
y_pred = sigmoid(tx @ w)
return calculate_logloss(y, y_pred)
else:
raise ValueError(
"Invalid value for argument 'loss_type' when calling compute_loss, 'type' must be in ['mse', 'mae', 'log']."
)
def compute_gradient(y, tx, w, loss_type, lambda_=0):
"""Computes the gradient at w.
Args:
y: numpy array of shape=(N, )
tx: numpy array of shape=(N,D)
w: numpy array of shape=(D, ). The vector of model parameters.
loss_type: string in ["mse", "log"] specifying the type of loss
Returns:
An numpy array of shape (D, ) (same shape as w), containing the gradient of the loss at w.
"""
if loss_type == "mse":
e = y - tx @ w
grad = -(tx.T @ e) / y.shape[0]
elif loss_type == "log":
e = sigmoid(tx @ w) - y
grad = (tx.T @ e) / y.shape[0]
grad = grad + 2 * lambda_ * w
return grad
def batch_iter(y, tx, batch_size=1, num_batches=1, shuffle=True):
"""
Generate a minibatch iterator for a dataset.
Takes as input two iterables (here the output desired values 'y' and the input data 'tx')
Outputs an iterator which gives mini-batches of `batch_size` matching elements from `y` and `tx`.
Data can be randomly shuffled to avoid ordering in the original data messing with the randomness of the minibatches.
Example of use :
for minibatch_y, minibatch_tx in batch_iter(y, tx, 32):
<DO-SOMETHING>
"""
data_size = len(y)
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_y = y[shuffle_indices]
shuffled_tx = tx[shuffle_indices]
else:
shuffled_y = y
shuffled_tx = tx
for batch_num in range(num_batches):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
if start_index != end_index:
yield shuffled_y[start_index:end_index], shuffled_tx[start_index:end_index]