-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
322 lines (266 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss, TV_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from os import makedirs
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams, ModelHiddenParams1
from utils.graphics_utils import getWorld2View2
from icecream import ic
import random
import copy
import json
import numpy as np
from torch.optim.lr_scheduler import ExponentialLR
from prune import prune_list, calculate_v_imp_score
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
class NumpyArrayEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NumpyArrayEncoder, self).default(obj)
to_tensor = lambda x: x.to("cuda") if isinstance(
x, torch.Tensor) else torch.Tensor(x).to("cuda")
img2mse = lambda x, y: torch.mean((x - y)**2)
mse2psnr = lambda x: -10. * torch.log(x) / torch.log(to_tensor([10.]))
def prepare_output_and_logger(args):
if not args.model_path:
unique_str = args.expname
args.model_path = os.path.join("./output/", unique_str)
args.model_path += args.expname
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene: Scene, renderFunc, renderArgs, stage="fine"):
if tb_writer:
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
def distill_training(
dataset, hyper, opt, pipe,
args
):
testing_iterations, saving_iterations = args.test_iterations, args.save_iterations
checkpoint_iterations, checkpoint, debug_from = args.checkpoint_iterations, args.start_checkpoint, args.debug_from
new_max_sh = args.new_max_sh
distill_feature = args.distill_feature
first_iter = 0
old_sh_degree = dataset.sh_degree
dataset.sh_degree = new_max_sh
tb_writer = prepare_output_and_logger(args)
with torch.no_grad():
teacher_gaussians = GaussianModel(old_sh_degree, hyper, distill_feature=distill_feature)
# teacher_gaussians.training_setup(opt)
dataset.model_path = args.model_path
student_gaussians = GaussianModel(old_sh_degree, hyper, distill_feature=distill_feature)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# record the pruned gaussians; True means the corresponding gaussian has been pruned; modified by Piang
prune_mask = None
if checkpoint:
(teacher_model_params, _) = torch.load(args.teacher_model)
(model_params, first_iter) = torch.load(checkpoint)
teacher_gaussians.restore(teacher_model_params, copy.deepcopy(opt))
teacher_gaussians.load_model(args.deformatioin_model_path)
student_gaussians.restore(model_params, opt)
student_gaussians.load_model(args.deformatioin_model_path)
student_scene = Scene(dataset, student_gaussians, load=False)
if args.prune_sh:
student_gaussians.max_sh_degree = new_max_sh
student_gaussians.onedownSHdegree()
# student_gaussians.onedownSHdegree() # modified by Piang
if args.prune:
gaussian_list, imp_list, opacity_list, delta_scale_list = prune_list(student_gaussians, student_scene, pipe, background, distill_feature=distill_feature)
i = 0
deform_sort, _ = torch.sort(delta_scale_list, dim=0)
index_nth_percentile = int(args.prune_threshold * (deform_sort.shape[0] - 1))
value_nth_percentile = deform_sort[index_nth_percentile]
deformation_point = (delta_scale_list >= value_nth_percentile).squeeze()
opacity_list = gaussian_list * opacity_list.reshape(-1)
delta_scale_list = gaussian_list * delta_scale_list.reshape(-1)
v_list = calculate_v_imp_score(student_gaussians, imp_list, args.v_pow)
# modified by piang
v_list[deformation_point] = v_list[deformation_point] * delta_scale_list[deformation_point]
v_list[~deformation_point] = v_list[~deformation_point] * opacity_list[~deformation_point]
prune_mask = student_gaussians.prune_gaussians_with_deform(
(args.prune_decay**i) * args.prune_percent, v_list, deformation_point
)
if args.prune_deform:
hyper.kplanes_config = hyper.new_kplanes_config
student_gaussians.change_deformation2(hyper)
student_scene.gaussians = student_gaussians
student_gaussians.training_setup(opt)
if (not args.enable_covariance):
student_gaussians._scaling.requires_grad = False
student_gaussians._rotation.requires_grad = False
if (not args.enable_opacity):
student_gaussians._opacity.requires_grad = False
teacher_gaussians.optimizer = None
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
final_iter = opt.iterations + 1
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, final_iter + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, student_gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
student_gaussians.update_learning_rate(iteration - first_iter)
# Every 500 iterations step in scheduler
if iteration % 500 == 0:
# student_gaussians.oneupSHdegree()
# student_gaussians.scheduler.step()
pass
if not viewpoint_stack:
viewpoint_stack = copy.copy(student_scene.getTrainCameras())
viewpoint_cam_org = viewpoint_stack[randint(0, len(viewpoint_stack)-1)]
viewpoint_cam = copy.deepcopy(viewpoint_cam_org)
student_render_pkg = render(viewpoint_cam, student_gaussians, pipe, background, distill_feature=distill_feature)
student_image = student_render_pkg["render"]
mask = viewpoint_cam.mask.cuda()
teacher_render_pkg = render(viewpoint_cam, teacher_gaussians, pipe, background, distill_feature=distill_feature)
teacher_image = teacher_render_pkg["render"].detach()
Ll1 = l2_loss(student_image * mask, teacher_image * mask)
loss = Ll1
if args.distill_feature:
student_feature = student_render_pkg["deformation_feature"]
teacher_feature = teacher_render_pkg["deformation_feature"].detach()
# notice: should be prune_mask1, otherwise, the value will be modified in different iterations
prune_mask1 = ~prune_mask
teacher_feature = teacher_feature[prune_mask1]
L_feature = l2_loss(student_feature, teacher_feature)
loss += L_feature * 0.1
if args.gt:
gt_image = viewpoint_cam.original_image.cuda().float()
L_gt = l2_loss(student_image * mask, gt_image * mask)
loss += L_gt
if opt.lambda_dssim != 0:
ssim_loss = ssim(teacher_image * mask, student_image * mask)
ssim_loss1 = ssim(gt_image * mask, student_image * mask)
loss += opt.lambda_dssim * (1.0-ssim_loss)
loss += opt.lambda_dssim * (1.0-ssim_loss1)
loss.backward()
iter_end.record()
if iteration < opt.iterations:
student_gaussians.optimizer.step()
student_gaussians.optimizer.zero_grad(set_to_none = True)
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration in saving_iterations:
print("\n[ITER {}] Saving Gaussians".format(iteration))
ic(student_gaussians._features_rest.detach().shape)
student_scene.save(iteration, stage="fine")
print("\n[ITER {}] Saving Checkpoint".format(iteration))
if not os.path.exists(student_scene.model_path):
os.makedirs(student_scene.model_path)
torch.save((student_gaussians.capture(), iteration), student_scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[35_001, 40_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[2000, 3000, 4000, 5000, 6000, 7000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[2000, 3000])
parser.add_argument("--start_checkpoint", type=str, default = "/path/to/teacher/model/")
parser.add_argument("--new_max_sh", type=int, default = 2)
parser.add_argument("--augmented_view", action="store_true")
parser.add_argument("--enable_covariance", action="store_true")
parser.add_argument("--enable_opacity", action="store_true")
parser.add_argument("--opacity_prune", type=float, default=0)
parser.add_argument("--deformatioin_model_path", type=str, default="/path/to/teacher/model/")
parser.add_argument("--teacher_model", type=str, default="/path/to/teacher/model/")
parser.add_argument("--expname", type=str, default="/name/of/output/file")
parser.add_argument("--configs", type=str, default = "/path/to/config")
parser.add_argument(
"--prune_iterations", nargs="+", type=int, default=[16_000, 24_000]
)
parser.add_argument("--prune_percent", type=float, default=0.6)
parser.add_argument("--v_pow", type=float, default=0.1)
parser.add_argument("--prune_decay", type=float, default=0.6)
parser.add_argument("--prune", action='store_true')
parser.add_argument("--prune_threshold", type=float, default=0.6)
parser.add_argument("--prune_sh", action='store_true')
parser.add_argument("--prune_deform", action='store_true')
parser.add_argument("--distill_feature", action='store_true')
parser.add_argument("--gt", action="store_true")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
args.checkpoint_iterations = args.save_iterations
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
distill_training(
lp.extract(args),
hp.extract(args),
op.extract(args),
pp.extract(args),
args,
)
# All done
print("\nTraining complete.")