forked from Rem105-210/DiffFashion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathid_loss.py
44 lines (39 loc) · 1.65 KB
/
id_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
from torch import nn
# from configs.paths_config import model_paths
from id_model.model_irse import Backbone
class IDLoss(nn.Module):
def __init__(self):
super(IDLoss, self).__init__()
print('Loading ResNet ArcFace')
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load('./id_model/model_ir_se50.pth'))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
def extract_feats(self, x):
x = x[:, :, 35:223, 32:220] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, y_hat, y):
n_samples = y_hat.shape[0]
# x_feats = self.extract_feats(x)
y_feats = self.extract_feats(y) # Otherwise use the feature from there
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
# sim_improvement = 0
# id_logs = []
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
# diff_input = y_hat_feats[i].dot(x_feats[i])
# diff_views = y_feats[i].dot(x_feats[i])
# id_logs.append({'diff_target': float(diff_target),
# 'diff_input': float(diff_input),
# 'diff_views': float(diff_views)})
loss += 1 - diff_target
# id_diff = float(diff_target) - float(diff_views)
# sim_improvement += id_diff
count += 1
return loss / count#, sim_improvement / count, id_logs