forked from airaria/TextBrewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.emd.py
204 lines (176 loc) · 8.44 KB
/
main.emd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO,
)
logger = logging.getLogger("Main")
import os,random
import numpy as np
import torch
from utils_glue import output_modes, processors
from transformers import BertConfig, AdamW, get_linear_schedule_with_warmup, BertTokenizer
import config
from utils import divide_parameters, load_and_cache_examples
from modeling import BertForGLUESimple, BertForGLUESimpleAdaptorTrain, BertForGLUESimpleAdaptor
from textbrewer import DistillationConfig, TrainingConfig
from distiller_emd import EMDDistiller
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler, DistributedSampler
from tqdm import tqdm
from utils_glue import compute_metrics
from functools import partial
import re
from predict_function import predict
from parse import parse_model_config, MODEL_CLASSES
def args_check(args):
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
logger.warning("Output directory () already exists and is not empty.")
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_train and not args.do_predict:
raise ValueError("At least one of `do_train` or `do_predict` must be True.")
if args.local_rank == -1 or args.no_cuda:
if not args.no_cuda and not torch.cuda.is_available():
raise ValueError("No CUDA available!")
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count() if not args.no_cuda else 0
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
torch.distributed.init_process_group(backend='nccl')
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
args.n_gpu = n_gpu
args.device = device
return device, n_gpu
def main():
#parse arguments
config.parse()
args = config.args
for k,v in vars(args).items():
logger.info(f"{k}:{v}")
#set seeds
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
#arguments check
device, n_gpu = args_check(args)
os.makedirs(args.output_dir, exist_ok=True)
forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
args.forward_batch_size = forward_batch_size
#load config
teachers_and_student = parse_model_config(args.model_config_json)
#Prepare GLUE task
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
#read data
train_dataset = None
eval_datasets = None
num_train_steps = None
tokenizer_S = teachers_and_student['student']['tokenizer']
prefix_S = teachers_and_student['student']['prefix']
if args.do_train:
train_dataset = load_and_cache_examples(
args, args.task_name,tokenizer_S, prefix=prefix_S,evaluate=False)
if args.do_predict:
eval_datasets = []
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
for eval_task in eval_task_names:
eval_datasets.append(load_and_cache_examples(args, eval_task, tokenizer_S, prefix=prefix_S, evaluate=True))
logger.info("Data loaded")
#Build Model and load checkpoint
if args.do_train:
if True:
teacher = teachers_and_student['teachers'][0]
model_type_T = teacher['model_type']
model_config_T = teacher['config']
checkpoint_T = teacher['checkpoint']
_,_,model_class_T = MODEL_CLASSES[model_type_T]
model_T = model_class_T(model_config_T, num_labels=num_labels)
state_dict_T = torch.load(checkpoint_T,map_location='cpu')
missing_keys, un_keys = model_T.load_state_dict(state_dict_T,strict=True)
logger.info(f"Teacher Model {model_type_T} loaded")
model_T.to(device)
student = teachers_and_student['student']
model_type_S = student['model_type']
model_config_S = student['config']
checkpoint_S = student['checkpoint']
_,_,model_class_S = MODEL_CLASSES[model_type_S]
model_S = model_class_S(model_config_S, num_labels=num_labels)
if checkpoint_S is not None:
state_dict_S = torch.load(checkpoint_S, map_location='cpu')
missing_keys, un_keys = model_S.load_state_dict(state_dict_S,strict=False)
logger.info(f"missing keys:{missing_keys}")
logger.info(f"unexpected keys:{un_keys}")
else:
logger.warning("Initializing student randomly")
logger.info("Student Model loaded")
model_S.to(device)
if args.local_rank != -1 or n_gpu > 1:
if args.local_rank != -1:
raise NotImplementedError
elif n_gpu > 1:
if args.do_train:
model_T = torch.nn.DataParallel(model_T) #,output_device=n_gpu-1)
model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1)
if args.do_train:
#parameters
params = list(model_S.named_parameters())
all_trainable_params = divide_parameters(params, lr=args.learning_rate)
logger.info("Length of all_trainable_params: %d", len(all_trainable_params))
#if args.local_rank == -1:
train_dataloader = DataLoader(train_dataset, sampler=RandomSampler(train_dataset), batch_size=args.forward_batch_size,drop_last=True)
num_train_steps = int(len(train_dataloader)//args.gradient_accumulation_steps * args.num_train_epochs)
########## DISTILLATION ###########
train_config = TrainingConfig(
gradient_accumulation_steps = args.gradient_accumulation_steps,
ckpt_frequency = args.ckpt_frequency,
log_dir = args.output_dir,
output_dir = args.output_dir,
fp16 = args.fp16,
device = args.device)
from matches import matches
intermediate_matches = None
#if isinstance(args.matches,(list,tuple)):
# intermediate_matches = []
# for match in args.matches:
# intermediate_matches += matches[match]
#logger.info(f"{intermediate_matches}")
distill_config = DistillationConfig(
temperature=args.temperature)
logger.info(f"{train_config}")
logger.info(f"{distill_config}")
adaptor_T = BertForGLUESimpleAdaptor
adaptor_S = BertForGLUESimpleAdaptor
distiller = EMDDistiller(train_config = train_config,
distill_config = distill_config,
model_T = model_T, model_S = model_S,
adaptor_T = adaptor_T,
adaptor_S = adaptor_S,
emd = {'layer_num_S':4+1, 'layer_num_T':12+1, #number of hidden_states + embedding_layer
'feature':'hidden','loss':'hidden_mse',
'weight':1.0,'proj':['linear',312,768]})
optimizer = AdamW(all_trainable_params,lr=args.learning_rate)
scheduler_class = get_linear_schedule_with_warmup
scheduler_args = {'num_warmup_steps': int(args.warmup_proportion*num_train_steps),
'num_training_steps': num_train_steps}
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Forward batch size = %d", forward_batch_size)
logger.info(" Num backward steps = %d", num_train_steps)
callback_func = partial(predict, eval_datasets=eval_datasets, args=args)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
raise NotImplementedError
with distiller:
distiller.train(optimizer, scheduler_class=scheduler_class, scheduler_args=scheduler_args, dataloader = train_dataloader,
num_epochs = args.num_train_epochs, callback=callback_func,max_grad_norm=1)
if not args.do_train and args.do_predict:
res = predict(model_S,eval_datasets,step=0,args=args)
print (res)
if __name__ == "__main__":
main()