forked from aburkov/theMLbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_regression.py
63 lines (50 loc) · 2.08 KB
/
kernel_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import math
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.kernel_ridge import KernelRidge
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 25})
def f(x):
""" function to approximate by polynomial interpolation"""
return x * (x)
# generate points used to plot
x_plot = np.linspace(-5, 2, 100)
# generate points and keep a subset of them
x = np.linspace(-5, 2, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:50])
noize = [(-5 + np.random.random()*5) for i in range(len(x))]
y = f(x) + noize
# create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]
colors = ['red', 'blue', 'orange']
lw = 2
def kernel(x1, x2, b = 2):
z = (x1 - x2) / b
return (1/math.sqrt(2 * 3.14)) * np.exp(-z**2/2)
fit = ["fit", "small overfit", "big overfit"]
for count, degree in enumerate([0.1, 0.5, 3]):
plt.figure(count)
axes = plt.gca()
axes.set_xlim([-5,2])
axes.set_ylim([-10,30])
plt.scatter(x, y, color='navy', s=30, marker='o', label="training examples")
model = KernelRidge(alpha=0.01, kernel=kernel, kernel_params = {'b':degree})
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="b = " + str(degree))
plt.legend(loc='upper right')
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/kernel-regression-' + str(count) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/kernel-regression-' + str(count) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/kernel-regression-' + str(count) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
plt.show()