This repository has been archived by the owner on Aug 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinformation_test.go
150 lines (134 loc) · 5.68 KB
/
information_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
package gokalman
import (
"testing"
"github.com/gonum/matrix/mat64"
)
func TestNewInformationEstimateErrors(t *testing.T) {
est := NewInformationEstimate(mat64.NewVector(1, nil), mat64.NewVector(1, nil), mat64.NewSymDense(1, nil), mat64.NewSymDense(1, nil))
cov := est.Covariance()
if !IsNil(cov) {
t.Fatal("singular information matrix should return an empty covariance matrix")
}
}
func TestNewInformationErrors(t *testing.T) {
F, G, _ := Robot1DMatrices()
H := mat64.NewDense(2, 2, nil)
x0 := mat64.NewVector(2, nil)
Covar0 := mat64.NewSymDense(2, []float64{1, 0, 0, 0})
R := mat64.NewSymDense(1, []float64{0.05})
Q := mat64.NewSymDense(2, []float64{3e-4, 5e-3, 5e-3, 0.1}) // Q true
noise := NewNoiseless(Q, R)
_, _, err := NewInformationFromState(x0, Covar0, F, G, H, noise)
if err != nil {
t.Fatal("singular Covar0 failed (should have only displayed a warning)")
}
Covar0 = mat64.NewSymDense(3, nil)
if _, _, err := NewInformation(x0, Covar0, F, G, H, noise); err == nil {
t.Fatal("x0 and Covar0 of incompatible sizes does not fail")
}
x0 = mat64.NewVector(3, nil)
if _, _, err := NewInformation(x0, Covar0, F, G, H, noise); err == nil {
t.Fatal("F and Covar0 of incompatible sizes does not fail")
}
x0 = mat64.NewVector(2, nil)
Covar0 = mat64.NewSymDense(2, nil)
H = mat64.NewDense(3, 3, nil)
if _, _, err := NewInformation(x0, Covar0, F, G, H, noise); err == nil {
t.Fatal("H and x0 of incompatible sizes does not fail")
}
}
func TestInformation(t *testing.T) {
F, G, Δt := Midterm2Matrices()
Q := mat64.NewSymDense(3, []float64{2.5e-15, 6.25e-13, (25e-11) / 3, 6.25e-13, (5e-7) / 3, 2.5e-8, (25e-11) / 3, 2.5e-8, 5e-6})
R := mat64.NewSymDense(1, []float64{0.005 / Δt})
H := mat64.NewDense(1, 3, []float64{1, 0, 0})
noise := NewAWGN(Q, R)
x0 := mat64.NewVector(3, []float64{0, 0.35, 0})
P0 := ScaledIdentity(3, 10)
kfS, _, err := NewInformationFromState(x0, P0, F, G, H, noise)
if err != nil {
t.Fatal(err)
}
i0 := mat64.NewVector(3, nil)
I0 := mat64.NewSymDense(3, nil)
kfZ, est0, err := NewInformation(i0, I0, F, G, H, noise)
if err != nil {
t.Fatalf("%s", err)
}
var Finv mat64.Dense
Finv.Inverse(mat64.DenseCopyOf(F))
kfZ.SetStateTransition(F)
if !mat64.Equal(&Finv, kfZ.GetStateTransition()) {
t.Fatal("SetStateTransition did not return the expected Finv")
}
kfZ.SetInputControl(G)
if !mat64.Equal(G, kfZ.GetInputControl()) {
t.Fatal("SetInputControl did not return the expected G")
}
kfZ.SetMeasurementMatrix(H)
if !mat64.Equal(H, kfZ.GetMeasurementMatrix()) {
t.Fatal("GetMeasurementMatrix did not return the expected H")
}
kfZ.SetNoise(noise)
if !mat64.Equal(noise.MeasurementMatrix(), kfZ.GetNoise().MeasurementMatrix()) {
t.Fatal("GetNoise/SetNoise issue")
}
for _, kf := range []Information{*kfS, *kfZ} {
var est Estimate
yacc := []float64{0.12758, 0.11748, 0.20925, 0.0984, 0.12824, -0.069948, -0.11166, 0.25519, 0.12713, -0.011207, 0.50973, 0.12334, -0.028878, 0.19208, 0.17605, -0.10383, 0.19707, -0.40455, 0.27355, 0.060617, 0.10369, 0.22131, -0.0038337, -0.60504, -0.10213, -0.021907, 0.030875, 0.17578, -0.45262, -0.086119, -0.12265, -0.056002, -0.11744, 0.01039, 0.028251, 0.053642, 0.17204, -0.052963, -0.16611, 0.078431, -0.20175, -0.23044, 0.38302, -0.33455, -0.35916, 0.28959, 0.097137, -0.29778, -0.23343, 0.21113, -0.22098, -0.057898, 0.17649, 0.058624, 0.045438, 0.11104, 0.37742, 0.0013074, 0.34331, 0.37244, 0.01434, -0.35709, 0.14435, -0.20445, -0.031335, -0.35165, -0.091494, -0.34382, 0.36144, -0.3835, 0.10339, -0.055055, -0.17677, -0.12108, -0.094458, -0.38408, 0.03215, 0.5759, 0.3297, -0.63341, 0.11228, 0.32364, -0.36897, 0.050504, 0.25338, -0.040326, 0.37904, 0.083807, -0.1023, 0.19609, 0.43701, -0.067234, 0.11835, 0.10064, 0.1024, 0.19084, 0.22646, -0.17419, 0.27345, 36.295}
for k := 1; k < 100; k++ {
yVec := mat64.NewVector(1, []float64{yacc[k]})
est, err = kf.Update(yVec, mat64.NewVector(1, nil))
if err != nil {
t.Fatal(err)
}
// At k=99, there is an especially high yacc in order to test another line in the code.
if !est.IsWithinNσ(2) && k != 99 {
t.Logf("[WARN] 2σ bound breached: k=%d -> %s ", k, est)
}
if k == 0 || k == 99 {
t.Logf("k=%d\n%s", k, est)
}
}
if _, err = kf.Update(mat64.NewVector(1, nil), mat64.NewVector(2, nil)); err == nil {
t.Fatal("using an invalid control vector does not fail")
}
if _, err = kf.Update(mat64.NewVector(2, nil), mat64.NewVector(1, nil)); err == nil {
t.Fatal("using an invalid measurement vector does not fail")
}
}
// Test reset
kfZ.Reset()
if kfZ.step != 0 {
t.Fatal("reset failed: step non nil")
}
if !mat64.Equal(kfZ.prevEst.State(), est0.State()) {
t.Fatal("reset failed: invalid initial state")
}
}
func TestInformationMultiD(t *testing.T) {
// DT system
Δt := 0.01
F := mat64.NewDense(4, 4, []float64{1, 0.01, 5e-5, 0, 0, 1, 0.01, 0, 0, 0, 1, 0, 0, 0, 0, 1.0005})
G := mat64.NewDense(4, 1, []float64{(5e-7) / 3, 5e-5, 0.01, 0})
H := mat64.NewDense(2, 4, []float64{1, 0, 0, 0, 0, 0, 1, 1})
// Noise
Q := mat64.NewSymDense(4, []float64{2.5e-15, 6.25e-13, (25e-11) / 3, 0, 6.25e-13, (5e-7) / 3, 2.5e-8, 0, (25e-11) / 3, 2.5e-8, 5e-6, 0, 0, 0, 0, 5.302e-4})
R := mat64.NewSymDense(2, []float64{0.005 / Δt, 0, 0, 0.0005 / Δt})
// Vanilla KF
noise := NewAWGN(Q, R)
x0 := mat64.NewVector(4, []float64{0, 0.35, 0, 0})
P0 := ScaledIdentity(4, 10)
kf, _, err := NewInformationFromState(x0, P0, F, G, H, noise)
t.Logf("%s", kf)
if err != nil {
panic(err)
}
measurements := []*mat64.Vector{mat64.NewVector(2, []float64{-0.80832, -0.011207}), mat64.NewVector(2, []float64{0.39265, 0.060617})}
for _, measurement := range measurements {
_, err := kf.Update(measurement, mat64.NewVector(1, nil))
if err != nil {
t.Fatal(err)
}
}
}