-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathworker_classify.py
75 lines (57 loc) · 3.06 KB
/
worker_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from __future__ import absolute_import
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'demo.settings')
import django
django.setup()
from django.conf import settings
from grad_cam.utils import log_to_terminal
from grad_cam.models import ClassificationJob
import grad_cam.constants as constants
import PyTorch
import PyTorchHelpers
import pika
import time
import yaml
import json
import traceback
# Close the database connection in order to make sure that MYSQL Timeout doesn't occur
django.db.close_old_connections()
ClassificationModel = PyTorchHelpers.load_lua_class(constants.CLASSIFICATION_LUA_PATH, 'ClassificationTorchModel')
ClassificationTorchModel = ClassificationModel(
constants.CLASSIFICATION_CONFIG['proto_file'],
constants.CLASSIFICATION_CONFIG['model_file'],
constants.CLASSIFICATION_CONFIG['backend'],
constants.CLASSIFICATION_CONFIG['input_sz'],
constants.CLASSIFICATION_CONFIG['layer_name'],
constants.CLASSIFICATION_CONFIG['seed'],
constants.CLASSIFICATION_GPUID,
)
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='classify_task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
try:
print(" [x] Received %r" % body)
body = yaml.safe_load(body) # using yaml instead of json.loads since that unicodes the string in value
result = ClassificationTorchModel.predict(body['image_path'], body['label'], body['output_dir'])
ClassificationJob.objects.create(job_id=body['socketid'], input_label=body['label'], image=str(result['input_image']).replace(settings.BASE_DIR, '')[1:], predicted_label = result['pred_label'], gcam_image=str(result['classify_gcam']).replace(settings.BASE_DIR, '')[1:])
# Close the database connection in order to make sure that MYSQL Timeout doesn't occur
django.db.close_old_connections()
result['input_image'] = str(result['input_image']).replace(settings.BASE_DIR, '')
result['classify_gcam'] = str(result['classify_gcam']).replace(settings.BASE_DIR, '')
result['classify_gcam_raw'] = str(result['classify_gcam_raw']).replace(settings.BASE_DIR, '')
result['classify_gb'] = str(result['classify_gb']).replace(settings.BASE_DIR, '')
result['classify_gb_gcam'] = str(result['classify_gb_gcam']).replace(settings.BASE_DIR, '')
print result
log_to_terminal("Hello", {"terminal": "Completed the Classification Task"})
log_to_terminal(body['socketid'], {"terminal": json.dumps(result)})
log_to_terminal(body['socketid'], {"result": json.dumps(result)})
log_to_terminal(body['socketid'], {"terminal": "Completed the Classification Task"})
ch.basic_ack(delivery_tag = method.delivery_tag)
except Exception, err:
log_to_terminal(body['socketid'], {"terminal": json.dumps({"Traceback": str(traceback.print_exc())})})
channel.basic_consume(callback,
queue='classify_task_queue')
channel.start_consuming()