-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstatistics.py
117 lines (107 loc) · 4.08 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -*- coding: utf-8 -*-
"""
Python implementation for compression ensembles to quantify the aesthetic complexity of images
See paper: https://arxiv.org/abs/2205.10271
"Compression ensembles quantify aesthetic complexity and the evolution of visual art"
Andres Karjus, Mar Canet Solà, Tillmann Ohm, Sebastian E. Ahnert, Maximilian Schich
Note: Our paper may describe slightly different transformations using R and ImageMagick.
This version uses Python and OpenCV with optimized transformations which should run much faster.
The specific transformations and total number is abritrary for the method (see paper).
"""
import cv2
import numpy as np
import sys, math
#----------------------------------------------------------------------------------------------
# Statistical transformation methods
#----------------------------------------------------------------------------------------------
def fractalDimension(Z,threshold=None):
# From https://github.com/rougier/numpy-100 (#87)
def boxcount(Z, k):
S = np.add.reduceat(
np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
np.arange(0, Z.shape[1], k), axis=1)
# We count non-empty (0) and non-full boxes (k*k)
return len(np.where((S > 0) & (S < k*k))[0])
# Transform Z into a binary array
if threshold:
Z = Z/256.0
Z = (Z < threshold)
# Minimal dimension of image
p = min(Z.shape)
# Greatest power of 2 less than or equal to p
n = 2**np.floor(np.log(p)/np.log(2))
# Extract the exponent
n = int(np.log(n)/np.log(2))
# Build successive box sizes (from 2**n down to 2**1)
sizes = 2**np.arange(n, 1, -1)
# Actual box counting with decreasing size
counts = []
for size in sizes:
counts.append(boxcount(Z, size))
# Fit the successive log(sizes) with log (counts)
try:
coeffs = np.polyfit(np.log(sizes), np.log(counts), 1)
return -coeffs[0]
except:
return 0
# Entropy of Hough Lines angles: Hough Lines are somewhat probleatic, should be reconsidered if useful
def entropy(labels, base=None):
""" Computes entropy of label distribution. """
n_labels = len(labels)
if n_labels <= 1:
return 0
value,counts = np.unique(labels, return_counts=True)
probs = counts / n_labels
n_classes = np.count_nonzero(probs)
if n_classes <= 1:
return 0
ent = 0.
# Compute entropy
base = math.e if base is None else base
for i in probs:
ent -= i * math.log(i, base)
return ent
def colorFreqDistStats(H):
h, w = H.shape
tot = h * w
# calculate histogram
hist = cv2.calcHist([H], [0], None, [181], [0, 181])
# Normalize mean
nmean = np.mean(hist)/180
Hmin = hist.min()/180
Hmax = hist.max()/180
nmed = np.median(hist)/180
nstd = np.std(hist)/180
ent = entropy(hist)
# # entropy = -sum(hist[i]/tot)*log(hist[i]/tot))
# # where hist[i]/tot = probability
# # note: log(0) = -inf, so skip empty bins
# entropy2 = 0
# bins = 0
# for i in range (0,181):
# if hist[i][0] != 0:
# entropy2 = entropy2 - (hist[i][0]/tot)*math.log(hist[i][0]/tot)
# bins = bins + 1
# print('entropy2:', entropy2)
# print('entropy:', ent)
return {"mean": nmean, "min": Hmin, "max": Hmax, "median": nmed, "std": nstd, "entropy": ent}
# Hasler & Süsstrunk -> hasler2003measuring: https://doi.org/10.1117/12.477378.
def colorfulnessHasler(image):
# split the image into its respective RGB components
(B, G, R) = cv2.split(image.astype("float"))
# compute rg = R - G
rg = np.absolute(R - G)
# compute yb = 0.5 * (R + G) - B
yb = np.absolute(0.5 * (R + G) - B)
# compute the mean and standard deviation of both `rg` and `yb`
(rbMean, rbStd) = (np.mean(rg), np.std(rg))
(ybMean, ybStd) = (np.mean(yb), np.std(yb))
# combine the mean and standard deviations
stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2))
meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2))
# derive the "colorfulness" metric and return it
return stdRoot + (0.3 * meanRoot)
def luminosityRange(L):
return abs(L.max()-L.min())
def luminosityStd(L):
return L.std()