-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexaming_data.Rmd
278 lines (204 loc) · 9.2 KB
/
examing_data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
title: "Examining data"
output: html_document
---
As an example, we will load a data set based on the registration data for this workshop.
Before we begin, use the broom icon in the Environment tab to clear the environment.
# Loading packages
Now, load the required packages. If this was on your own computer, you might have to install packages first using
install.packages("tidyverse")
install.packages("ggtext")
```{r message=FALSE, warning=FALSE, include=FALSE, results='hide'}
require(ggplot2) #like library()
require(dplyr)
require(lubridate)
#require(ggExtra)
require(skimr)
```
# Loading data
The data is in comma separated format, so the default settings of `read.csv` work well:
```{r}
df = read.csv("registration_times.csv")
```
There is no output but you can see the data has loaded in the Environment tab.
We can get basic information about the data using functions:
```{r}
names(df)
dim(df)
```
Where did that period come from? R does not like spaces in variable names, so spaces become periods when you import files. (See raw data in viewer). `Registration Time` becomes `Registration.Time`
We might also want to view a summary and first few lines of the file.
```{r paged.print=FALSE}
summary(df) # also see Env tab
writeLines("") # this creates a line return in cell output below
head(df)
```
Another nice summary from the `skimr` package:
```{r eval=FALSE, include=FALSE, paged.print=FALSE}
skimr::skim(df)
```
### Check the data types
Sometimes, R is able to guess the data types but is does not always guess correctly. The Registration.Time column should represent a date and time but R did not auto-convert it. We should convert to a datetime. The organization name came in as a string, but we would prefer to treat that as a factor.
The `ymd_hms()` function from the `lubridate` package is a convenient choice. For example:
```{r}
ymd_hms("2022-10-19 13:43:15")
```
Note: Many functions work on entire data columns (vectors)
```{r}
head(ymd_hms(df$Registration.Time))
```
Lets update those columns and check the summary again:
```{r paged.print=FALSE}
df$Registration.Time = ymd_hms(df$Registration.Time)
df$org = factor(df$org, levels=c('wcm', 'cu', 'other'))
skim(df)
#summary(df)
```
# ggplot2 & dplyr
Hadley Wickham, currently working at Posit, the company that develops RStudio, produced a collection of add-on packages for R that address major shortcomings in the R experience and make R more pleasant to use. Collectively, this set of packages is known as the *tidyverse* and it includes the well known *ggplot2* and *dplyr* packages and a host of smaller utility functions.
Wickham has a vision for how R can enable data analysis by using a common *grammar* to describe how to visualize or analyze data. When you use this grammar to produce results, you can focus on what you want the analysis to do and less on how to accomplish it. When you use this grammar of graphics or grammar of data analysis, the code that produces your results describes the steps succinctly.
RStudio PBC publishes documentation, tutorials and training, including these helpful cheatsheets <https://www.rstudio.com/resources/cheatsheets/>.
## "pipe" operator: `%>%`
The tidyverse uses an operator to chain function calls in a way that is easy for humans to read.
Without the pipe operator, your code might look like this:
sorted_df = arrange(df, Registration.Time)
sorted_df_with_total = mutate(sorted_df, cumtotal=row_number(Registration.Time))
plot_df = filter(sorted_df_with_total, Registration.Time > ymd_hm("2022-10-18 13:00"))
Even worse, you might be tempted to nest the functions:
plot_df = filter(mutate(arrange(df, Registration.Time), cumtotal=row_number(Registration.Time)), Registration.Time > ymd_hm("2022-10-18 13:00"))
With the pipe operator, you can express the same steps as a sequence of operations without creating several intermediate variable names. Arranged as a sequence, we can see that we sort the data.frame, add a column to reflect the total number of registrants, and then filter the data to include cases after a certain date.
I prefer the wrap the steps in parenthesis and start each line with the `%>%` operator, so I can comment out individual lines. It is far more common to omit the parenthesis and end each line with a `%>%`.
```{r}
plot_df = (
df
%>% arrange(Registration.Time)
%>% mutate(cumtotal = row_number(Registration.Time))
%>% filter(Registration.Time >= ymd_hm("2022-10-18 13:00"))
)
plot_df %>% head #same as `head(plot_df)`
```
# Plotting the data
Suppose we want to examine how registration changed over time. We can plot a histogram of the number of registrants in each interval.
ggplot2 uses a similar system of composing plots by applying a sequence of steps but it uses the `+` operator to combine steps.
Note: see <https://ggplot2.tidyverse.org/reference/ggsave.html> for writing plots to a file.
```{r}
plot_df = (
df
%>% arrange(Registration.Time)
%>% filter(Registration.Time >= ymd_hm("2022-10-18 13:00"))
)
my_plot = (
ggplot(plot_df, aes(x=Registration.Time))
#+ geom_histogram(binwidth = 60*60*24) #, color="darkgrey", fill="grey") #600s = 10mins
#+ geom_histogram(binwidth = 60*60*6, color="darkgrey", fill="grey")
#+ geom_freqpoly(binwidth = 60*60) #600 s = 10 minutes
#+ theme_bw()
#+ ggtitle("Registrations for R workshop")
#+ xlab("Time")
#+ ylab("Registration Count")
)
my_plot
```
```{r}
# dplyr: filtering data, ggplot: coloring by org,
plot_df = (
df
%>% arrange(Registration.Time)
%>% filter( #focus on the first 48 hours
Registration.Time >= ymd_hm("2022-10-18 13:00")
& Registration.Time < ymd_hm("2022-10-20 13:00")
)
)
(
ggplot(plot_df, aes(x=Registration.Time))
+ geom_histogram(binwidth = 60*60*4, position='stack', color='black', show.legend=TRUE)
+ theme_bw()
+ xlab("Time")
+ ylab("Registrations")
+ ggtitle("Registrations for R workshop in first 48 hours")
# in aes: fill=org
#+ scale_fill_brewer(palette = "RdYlBu")
#+ facet_wrap(~ org)
# maybe set show.legend=FALSE
#+ theme(axis.text.x = element_text(angle=30, hjust=1))
)
```
```{r}
# more dplyr - mutate for cumulative totals
plot_df = (
df
%>% arrange(Registration.Time)
%>% filter(
Registration.Time >= ymd_hm("2022-10-18 13:00")
#& Registration.Time < ymd_hm("2022-10-20 13:00")
)
%>% mutate(cumtotal = row_number(Registration.Time))
%>% group_by(org)
%>% mutate(cumgrptotal = row_number(Registration.Time))
%>% ungroup()
)
## inspect the data
plot_df %>% head(n=20)
```
```{r}
plot_df = (
df
%>% arrange(Registration.Time)
%>% filter(
Registration.Time >= ymd_hm("2022-10-18 13:00")
#& Registration.Time < ymd_hm("2022-10-20 13:00")
)
%>% mutate(cumtotal = row_number(Registration.Time))
%>% group_by(org)
%>% mutate(cumgrptotal = row_number(Registration.Time))
%>% ungroup()
)
## inspect the data
(
ggplot(plot_df, aes(x=Registration.Time, y=cumtotal))
+ geom_line()
+ theme_bw()
+ ggtitle("Total Registrations for R workshop")
+ xlab("Time")
+ ylab("Total Registrations")
#+ geom_point(aes(color=org), shape="cross")
#+ geom_line(aes(y=cumgrptotal, color=org))
#+ geom_hline(yintercept = 200, linetype="dashed", color='red')
#+ annotate("text", x=ymd_hm("2022-10-18 13:00"), y=200, label="Hypothetical Course Capacity", hjust=0, vjust=-.5)
)
#see vignette("ggplot2-specs") for linetype options
```
#### "I like ggplot, but I wish it also did..."
In typical R fashion, many ggplot extensions are available at <https://exts.ggplot2.tidyverse.org/gallery/>.
- Learn more about ggplot at <https://ggplot2.tidyverse.org/reference/index.html>.
- Visit <https://r-graph-gallery.com> for a gallery of examples of different kinds of R plots, mostly generated using ggplot2.
# Summarizing with dplyr
See <https://dplyr.tidyverse.org/articles/dplyr.html> for other dplyr verbs. Two important ones we haven't seen yet are `count()` and `summarize()`:
```{r paged.print=FALSE}
df %>% count(org, sort = TRUE)
```
```{r paged.print=FALSE}
summary_df = (
df
%>% filter(Registration.Time > ymd_hm("2022-10-18 13:00"))
%>% group_by(org)
%>% summarize(mean_reg = mean(Registration.Time) - ymd_hm("2022-10-18 13:00"), n=n())
%>% arrange(mean_reg)
)
print(summary_df)
```
# Statistical Analysis
With thousands of packages, R probably supports the analysis you need. Identifying the packages is harder:
- For basic statistical analysis, refer to one of the many books available at <https://cran.r-project.org/other-docs.html>
- *An R Companion to Applied Regression* (second edition) by John Fox and Sanford Weisberg
- *R for Data Science*, Hadley Wickam and Garrett Grolemund - <https://r4ds.had.co.nz>
- For more advanced or subject-specific information:
- Search community sites and blogs:
- <https://www.r-bloggers.com>
- <https://education.rstudio.com/learn/>
- google "analyze XYZ in R" or "\<*method*\> in R"\
- CRAN Task View organizes packages by topics:\
<https://cran.r-project.org/web/views/>
- Search for keywords in the package listing at\
<https://cran.r-project.org/web/packages/available_packages_by_name.html>
- *Advanced R (Programming)*, Hadley Wickam - <https://adv-r.hadley.nz>