Skip to content

Latest commit

 

History

History
123 lines (103 loc) · 10.7 KB

Elasticsearch高亮.md

File metadata and controls

123 lines (103 loc) · 10.7 KB

Elasticsearch 高亮搜索及显示

Elasticsearch 的高亮(highlight)可以让您从搜索结果中的一个或多个字段中获取突出显示的摘要,以便向用户显示查询匹配的位置。当您请求突出显示(即高亮)时,响应结果的 highlight 字段中包括高亮的字段和高亮的片段。Elasticsearch 默认会用 <em></em> 标签标记关键字。

1. 高亮参数

ES 提供了如下高亮参数:

参数 说明
boundary_chars 包含每个边界字符的字符串。默认为,! ?\ \ n。
boundary_max_scan 扫描边界字符的距离。默认为 20。
boundary_scanner 指定如何分割突出显示的片段,支持 chars、sentence、word 三种方式。
boundary_scanner_locale 用来设置搜索和确定单词边界的本地化设置,此参数使用语言标记的形式(“en-US”, “fr-FR”, “ja-JP”)
encoder 表示代码段应该是 HTML 编码的:默认(无编码)还是 HTML (HTML-转义代码段文本,然后插入高亮标记)
fields 指定检索高亮显示的字段。可以使用通配符来指定字段。例如,可以指定 comment**来获取以 comment*开头的所有文本和关键字字段的高亮显示。
force_source 根据源高亮显示。默认值为 false。
fragmenter 指定文本应如何在突出显示片段中拆分:支持参数 simple 或者 span。
fragment_offset 控制要开始突出显示的空白。仅在使用 fvh highlighter 时有效。
fragment_size 字符中突出显示的片段的大小。默认为 100。
highlight_query 突出显示搜索查询之外的其他查询的匹配项。这在使用重打分查询时特别有用,因为默认情况下高亮显示不会考虑这些问题。
matched_fields 组合多个匹配结果以突出显示单个字段,对于使用不同方式分析同一字符串的多字段。所有的 matched_fields 必须将 term_vector 设置为 with_positions_offsets,但是只有将匹配项组合到的字段才会被加载,因此只有将 store 设置为 yes 才能使该字段受益。只适用于 fvh highlighter。
no_match_size 如果没有要突出显示的匹配片段,则希望从字段开头返回的文本量。默认为 0(不返回任何内容)。
number_of_fragments 返回的片段的最大数量。如果片段的数量设置为 0,则不会返回任何片段。相反,突出显示并返回整个字段内容。当需要突出显示短文本(如标题或地址),但不需要分段时,使用此配置非常方便。如果 number_of_fragments 为 0,则忽略 fragment_size。默认为 5。
order 设置为 score 时,按分数对突出显示的片段进行排序。默认情况下,片段将按照它们在字段中出现的顺序输出(order:none)。将此选项设置为 score 将首先输出最相关的片段。每个高亮应用自己的逻辑来计算相关性得分。
phrase_limit 控制文档中所考虑的匹配短语的数量。防止 fvh highlighter 分析太多的短语和消耗太多的内存。提高限制会增加查询时间并消耗更多内存。默认为 256。
pre_tags 与 post_tags 一起使用,定义用于突出显示文本的 HTML 标记。默认情况下,突出显示的文本被包装在和标记中。指定为字符串数组。
post_tags 与 pre_tags 一起使用,定义用于突出显示文本的 HTML 标记。默认情况下,突出显示的文本被包装在和标记中。指定为字符串数组。
require_field_match 默认情况下,只突出显示包含查询匹配的字段。将 require_field_match 设置为 false 以突出显示所有字段。默认值为 true。
tags_schema 设置为使用内置标记模式的样式。
type 使用的高亮模式,可选项为**unifiedplainfvh**。默认为 unified

2. 自定义高亮片段

如果我们想使用自定义标签,在高亮属性中给需要高亮的字段加上 pre_tagspost_tags 即可。例如,搜索 title 字段中包含关键词 javascript 的书籍并使用自定义 HTML 标签高亮关键词,查询语句如下:

GET /books/_search
{
  "query": {
    "match": { "title": "javascript" }
  },
  "highlight": {
    "fields": {
      "title": {
        "pre_tags": ["<strong>"],
        "post_tags": ["</strong>"]
      }
    }
  }
}

3. 多字段高亮

关于搜索高亮,还需要掌握如何设置多字段搜索高亮。比如,搜索 title 字段的时候,我们期望 description 字段中的关键字也可以高亮,这时候就需要把 require_field_match 属性的取值设置为 faslerequire_field_match 的默认值为 true,只会高亮匹配的字段。多字段高亮的查询语句如下:

GET /books/_search
{
  "query": {
    "match": { "title": "javascript" }
  },
  "highlight": {
    "require_field_match": false,
    "fields": {
      "title": {},
      "description": {}
    }
  }
}

4. 高亮性能分析

Elasticsearch 提供了三种高亮器,分别是默认的 highlighter 高亮器postings-highlighter 高亮器fast-vector-highlighter 高亮器

默认的 highlighter 是最基本的高亮器。highlighter 高亮器实现高亮功能需要对 _source 中保存的原始文档进行二次分析,其速度在三种高亮器里最慢,优点是不需要额外的存储空间。

postings-highlighter 高亮器实现高亮功能不需要二次分析,但是需要在字段的映射中设置 index_options 参数的取值为 offsets,即保存关键词的偏移量,速度快于默认的 highlighter 高亮器。例如,配置 comment 字段使用 postings-highlighter 高亮器,映射如下:

PUT /example
{
  "mappings": {
    "doc": {
      "properties": {
        "comment": {
          "type": "text",
          "index_options": "offsets"
        }
      }
    }
  }
}

fast-vector-highlighter 高亮器实现高亮功能速度最快,但是需要在字段的映射中设置 term_vector 参数的取值为 with_positions_offsets,即保存关键词的位置和偏移信息,占用的存储空间最大,是典型的空间换时间的做法。例如,配置 comment 字段使用 fast-vector-highlighter 高亮器,映射如下:

PUT /example
{
  "mappings": {
    "doc": {
      "properties": {
        "comment": {
          "type": "text",
          "term_vector": "with_positions_offsets"
        }
      }
    }
  }
}