-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinput_dictionary.json
1588 lines (1588 loc) · 73.6 KB
/
input_dictionary.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"estimators": [
{
"estimator_id": "SDEstimator",
"algorithm_id": "SDAlgorithm",
"display_label": "Binary Syndrome Decoding",
"landing_page_content": "# Binary Syndrome Decoding Estimator\n\n\nThis project provides an estimator for the hardness of the binary syndrome decoding problem. This problem is defined as follows:\n\nLet $\\mathbf H\\in\\mathbb{F}_2^{(n-k)\\times n}$ be the parity-check matrix of a code of length $n$ and dimension $k$. Given $\\mathbf H$, a syndrome $\\mathbf{s}\\in\\mathbb{F}_2^{n-k}$ and an integer $\\omega < n$ the syndrome decoding problem asks to find a vector $\\mathbf e \\in \\mathbb{F}_2^n$ satisfying $\\mathbf H \\mathbf e=\\mathbf s$ while $\\mathbf e$ has a Hamming weight smaller or equal to $\\omega$.\n\nThe estimator covers Information Set Decoding (ISD) algorithms to estimate the hardness of given instances. More details on the theoretical foundations of the estimator can be found in the corresponding papers:\n\n*[[EB22]](https://link.springer.com/chapter/10.1007/978-3-030-97121-2_5) Andre Esser and Emanuele Bellini. Syndrome Decoding Estimator. [[eprint]](https://eprint.iacr.org/2021/1243.pdf)*\n\n*[[BM18]](https://link.springer.com/chapter/10.1007/978-3-319-79063-3_2) Leif Both and Alexander May. Decoding Linear Codes with High Error Rate and its Impact for LPN Security. [[eprint]](https://eprint.iacr.org/2017/1139.pdf)*\n\n*[[MO15]](https://link.springer.com/chapter/10.1007/978-3-662-46800-5_9) Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of binary linear codes [[preprint]](https://www.iacr.org/archive/eurocrypt2015/90560136/90560136.pdf)*\n \n*[[BJMM12]](https://link.springer.com/chapter/10.1007/978-3-642-29011-4_31) Anja Becker, Antoine Joux, Alexander May and Alexander Meurer. Decoding random binary linear codes in 2^(n/20): How 1+ 1= 0 improves information set decoding. [[eprint]](https://eprint.iacr.org/2012/026.pdf)* \n\n*[[MMT11]](https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6) Alexander May, Alexander Meurer and Enrico Thomae. Decoding random linear codes in 2^(0.054n) [[preprint]](https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/ac11_decoding.pdf)*\n\n*[[FS09]](https://link.springer.com/chapter/10.1007/978-3-642-10366-7_6) Matthieu Finiasz and Nicolas Sendrier. Security Bounds for the Design of Code-based\nCryptosystems. [[eprint]](https://eprint.iacr.org/2009/414.pdf)*\n\n*[[Dum91]](https://doi.org/10.1007/BFb0019850) Ilya Dumer. On minimum distance decoding of linear codes.*\n\n*[[Ste89]](https://doi.org/10.1007/BFb0019850) Jacques Stern. A method for finding codewords of small weight*\n\n*[[Pra62]](https://doi.org/10.1109/TIT.1962.1057777) Eugene Prange. The use of information sets in decoding cyclic codes*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Code length (n)",
"placeholder": "Insert parameter",
"tooltip": "Code length of the specified code",
"validate_fields_ids": [
"k",
"w"
]
},
{
"id": "k",
"type": "number",
"display_label": "Code dimension (k)",
"placeholder": "Insert parameter",
"tooltip": "Code dimension of specified code",
"validate_fields_ids": [
"w"
],
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "w",
"type": "number",
"display_label": "Error weight (w)",
"placeholder": "Insert parameter",
"tooltip": "Hamming weight of the target solution",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
},
{
"action": "validateLessThanOperation",
"operation": "n - k"
}
]
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
},
{
"id": "workfactor_accuracy",
"type": "slider",
"direction": "column",
"display_label": "Tilde-O accuracy",
"default_value": 1,
"tooltip": "Accuracy level of optimization",
"min": 1,
"max": 100,
"number_of_decimals": 0,
"step": 1
},
{
"id": "limit_depth",
"type": "switch",
"display_label": "Limit tree-depth",
"default_value": false,
"tooltip": "Limits the depth of May-Ozerov and BJMM algorithm to two, otherwise two and three are considered"
},
{
"id": "include_tildeo",
"type": "switch",
"display_label": "Tilde-O complexity",
"default_value": false,
"tooltip": "Include complexity estimates that disregard polynomial factors",
"dependencies": [
{
"id": "workfactor_accuracy",
"parent_value": true,
"action": "show"
}
]
},
{
"id": "hmap",
"type": "switch",
"display_label": "Hashmap",
"default_value": true,
"tooltip": "Use linear time matching between lists via hashmaps. If false, use sort-and-match"
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations"
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [
"BJMMdw",
"BJMMpdw"
],
"options": [],
"dependencies": [
{
"id": "limit_depth",
"parent_contains": [
"MayOzerov",
"BJMM"
],
"action": "show"
}
]
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "MQEstimator",
"algorithm_id": "MQAlgorithm",
"display_label": "Multivariate Quadratic",
"landing_page_content": "# Multivariate Quadratic Estimator\n\n\nThis project provides an estimator for the hardness of the multivariate quadratic problem. This problem is defined as follows: \nLet $\\mathbb{F}_{q}$ be a field with $q$ elements, and let $\\mathbb{F}_{q}[x_1, x_2, \\ldots, x_n]$ be the ring of polynomials in the variables $x_1, x_2, \\ldots, x_n$ and coefficients in $\\mathbb{F}_{q}$. Given $p_1, p_2, \\ldots, p_m \\in \\; \\mathbb{F}_{q}[x_1, x_2, \\ldots, x_n]$ the multivariate quadratic problem asks to find a vector $\\mathbf a \\in \\; \\mathbb{F}_q^n$ satisfying $p_{i}(\\mathbf a ) = 0$ for all $i=1,2,\\ldots,m$. \n\nMore details on the theoretical foundations of the estimator can be found in the corresponding papers:\n\n[[BFP09]](https://www.degruyter.com/document/doi/10.1515/JMC.2009.009/html) Luk Bettale, Jean-Charles Faug\u00e8re and Ludovic Perret. Hybrid Approach for Solving Multivariate Systems over Finite Fields. [[eprint]](https://www-polsys.lip6.fr/~jcf/Papers/JMC2.pdf)\n\n\n[[BFP12]](https://dl.acm.org/doi/10.1145/2442829.2442843) Luk Bettale, Jean-Charles Faug\u00e8re and Ludovic Perret. Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach.[[eprint]](https://inria.hal.science/hal-00776070/document)\n\n[[BFSS11]](https://pdf.sciencedirectassets.com/272569/1-s2.0-S0885064X12X00062/1-s2.0-S0885064X12000611/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBoaCXVzLWVhc3QtMSJGMEQCIBHnYYyQivq5VWZYvmhCqtMpTXyb0CrGtt7E1qyC0ZJ%2BAiBfUBVOKdbnJZzeZ%2FbgFOpYWU9l%2BQoFzOIcLVgpZZnm0yq6BQjS%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAUaDDA1OTAwMzU0Njg2NSIMwnWkvDQITUOcgAwNKo4FmSWjG8P8MVTGNxKlUW8YYmkHDWQVQB%2BVQW%2BG4jlq83XjGRCCjk0%2FDb6CjUKjBK%2FK8698eCXVZ4LJ9CVH9aRbSI8LNxJlzVah0DftlOeogKx6ARAJsmEAeKhsW55eDh3HVIaYKrgR0Ewfz3W1Vg0a19FUQUor17iqEW1RwWWKvA93ja%2FCDn26haeHuEl4Rjb%2BsQbavDeJZN%2FOAsIO60Boqe0PcmhJ8upEJRYz2Gom3W7ZoKIjKpQ7eyE90rBMoIKp94oM3yNkb5wKoYKIo6VKRR1wJ94AlyfeprmOSpFwX%2F6CMcBG43S0qyG7%2F2WRZHpTBwOM1RBKVzdR7jwj8j7LiQkaPIV1aFbpIn5Fp57TR3Iwq6YQfSmZeUtc7pJ8DRqihynCz8wR6U%2BEsg%2FUpHkZuesB5jtmLQE%2FrPsH5m4XmOiC%2BJzw3BAWpI4lqaDjW9b8eyg%2F4e2mOzZEOz0cj3Ew8ta0PhDureat9twodedu6227smjrLUySdJwOyDqqdje4WxKsBnUJ4fEteP0aSoT41x1E2BOGZw9uhVz9rxaNK23VySJ%2Bcu6n5g9JPJ2hNXB272PfephanXGRwsA2IldE9NokT22Eawg9%2B3c2E2wwcj5WJSFjTrnCaxK88y%2FBXbsYqIkztlrbFVhDs48QfzndR4wkqBX8kW6plvxLQV4RsSomuw1wUbbsBsMMBRDN0EpS6KdL4Jvt7hBuOb%2FiyboGQVDKl6c3s3kWxx%2FIkDY0SRSEKfyMX%2BumI%2FL%2FQ%2B5ob7hxxOXmUgtjfKj8tQ1Kl1VNEub2eT%2BAN4cgU9V74fbIKWKQXEGp%2Bc4zsCYk62vT8ftnhi2Pt88cl8CikAa5fZAqw8uKpdFcxi%2B%2BJ6WfyE2iMKHRjKcGOrIBLNhClwMzLz7TV7LRxsX6kFR%2BzwbMHqXWv8PpCUIYdEKP1RGHvCAT4q50xHGzfJqb5CxSkGoL56Fove9gzFqKWSRllpuUV1RZ7GZWsYtkWNpOWQuIRz8JHPK7yHCgVs94kWjD8yIS%2BrK93eYxkoDK%2BTWzSl2aMTlaCavMnNNf7frjwXiuOZbMwo1dl46JJA%2BvkK%2Fq4Ax8Q7X79JtiYjpvJ7mr82RL2oMPqsy0MpECstoIKQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230821T101656Z&X-Amz-SignedHeaders=host&X-Amz-Expires=299&X-Amz-Credential=ASIAQ3PHCVTYTP2IJIPD%2F20230821%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=e090ae1ce0cc71e9c821a3b37d14928c394ef10c0a5d6bbbcc23e6c2a051ad58&hash=b13dc44acd73359364fc817eb08d10ea6b5bc3661d7a71b501eb0ec26b56ec32&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0885064X12000611&tid=spdf-60dd10bd-1c4f-413d-90ee-b5f00b079ede&sid=bf3cf8d028ef4649897883c939f8845d9e60gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=070652070f5d54015a5b&rr=7fa21f953c3917d7&cc=ae) Magali Bardet, Jean-Charles Faug\u00e8re, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the Complexity of Solving Quadratic Boolean Systems.\n\n[[BKW19]](https://drops.dagstuhl.de/opus/volltexte/2019/10602/pdf/LIPIcs-ICALP-2019-26.pdf) Andreas Bj\u00f6rklund, Petteri Kaski, and Ryan Williams. Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction. [[eprint]](https://drops.dagstuhl.de/opus/volltexte/2019/10602/pdf/LIPIcs-ICALP-2019-26.pdf)\n\n[[BMSV22]](https://eprint.iacr.org/2022/708.pdf) Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier Verbel. An Estimator for the Hardness of the MQ Problem. [[eprint]](https://eprint.iacr.org/2022/708.pdf)\n\n[[BCCCNSY10]](https://www.iacr.org/archive/ches2010/62250195/62250195.pdf) Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast Exhaustive Search for Polynomial Systems in $\\mathbb{F}_2$.\n\n[[CKPS00]](https://link.springer.com/chapter/10.1007/3-540-45539-6_27) Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. [[eprint]](https://www.iacr.org/archive/eurocrypt2000/1807/18070398-new.pdf)\n\n[[CGMT02]](https://link.springer.com/chapter/10.1007/3-540-45664-3_15) Nicolas Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving Underdefined Systems of Multivariate Quadratic Equations.\n\n[[Din21a]](https://dl.acm.org/doi/abs/10.5555/3458064.3458215) Itai Dinur. Improved Algorithms for Solving Polynomial Systems over GF(2) by Multiple Parity-Counting. [[preprint]](https://arxiv.org/pdf/2005.04800.pdf)\n\n[[Din21b]](https://link.springer.com/chapter/10.1007/978-3-030-77870-5_14) Itai Dinur. Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation Systems over GF(2). [[eprint]](https://eprint.iacr.org/2021/578.pdf)\n\n[[JV18]](https://link.springer.com/chapter/10.1007/978-3-319-76620-1_1) Antoine Joux and Vanessa Vitse. A Crossbred Algorithm for Solving Boolean Polynomial Systems. [[eprint]](https://eprint.iacr.org/2017/372.pdf)\n\n[[KPG99]](https://link.springer.com/chapter/10.1007/3-540-48910-X_15) Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar Signature Schemes. [[extended]](http://www.goubin.fr/papers/OILLONG.PDF)\n\n[[LPTWY17]](https://epubs.siam.org/doi/epdf/10.1137/1.9781611974782.143) Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams, and Huacheng Yu. Beating Brute Force for Systems of Polynomial Equation over Finite Fields.\n\n[[MHT13]](https://link.springer.com/chapter/10.1007/978-3-642-38616-9_8) Hiroyuki Miura, Yasufumi Hashimoto, and Tsuyoshi Takagi. Extended Algorithm for Solving Underdefined Multivariate Quadratic Equations.\n\n[[TW12]](https://link.springer.com/chapter/10.1007/978-3-642-30057-8_10) Enrico Thomae and Christopher Wolf. Solving Underdetermined Systems of Multivariate Quadratic Equations Revisited.[[eprint]](https://www.iacr.org/archive/pkc2012/72930159/72930159.pdf)\n",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Number of variables (n)",
"placeholder": "Insert parameter",
"tooltip": "The number of variables of the system to solve",
"validate_fields_ids": [
"h"
]
},
{
"id": "m",
"type": "number",
"display_label": "Number of equations (m)",
"placeholder": "Insert parameter",
"tooltip": "The number of equations of the system to solve"
},
{
"id": "q",
"type": "number",
"display_label": "Field size (q)",
"placeholder": "Insert parameter",
"tooltip": "An integer of the form p^x for some integer x, where p is prime number. This value indicates the number of elements in the underlying field"
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
},
{
"id": "include_tildeo",
"type": "switch",
"display_label": "Tilde-O complexity",
"default_value": false,
"tooltip": "Include complexity estimates that disregard polynomial factors"
},
{
"id": "w",
"type": "slider",
"direction": "column",
"display_label": "Matrix multiplication constant",
"default_value": 2.81,
"tooltip": "Indicates that two square matrices of size n can be multiplied by performing O(n^w) field multiplications",
"min": 2,
"max": 3,
"number_of_decimals": 2,
"step": 0.01
},
{
"id": "h",
"type": "number",
"direction": "column",
"display_label": "Number of variables to guess",
"default_value": 0,
"placeholder": "Insert parameter",
"tooltip": "Assumes that the initial system is splited into q^h subsystems of n-h variables and m equations. In this case the time complexity is given by q^h times the complexity a given subsystem. The memory complexity is given by the memory required to solve one subsystem",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "max_D",
"type": "number",
"direction": "column",
"display_label": "Max D for Crossbred",
"default_value": 20,
"placeholder": "Insert value",
"tooltip": "Upper bound to the parameter D "
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations",
"dependencies": [
{
"id": "theta",
"parent_value": true,
"action": "show"
}
]
},
{
"id": "theta",
"type": "number",
"direction": "column",
"display_label": "Bitcomplexity exponent",
"default_value": 2,
"placeholder": "Insert value",
"tooltip": "The bitcomplexity of a field multiplication is assumed to be log_2(q)^(theta). Note that for theta = 0 the output gives the (log of the) necessary number of field multiplications."
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": [
{
"id": "max_D",
"parent_contains": [
"Crossbred"
],
"action": "show"
}
]
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "RegSDEstimator",
"algorithm_id": "RegSDAlgorithm",
"display_label": "Regular Syndrome Decoding",
"landing_page_content": "# Regular Syndrome Decoding Estimator\n\n\nThis project provides an estimator for the hardness of the regular syndrome decoding problem. This problem is defined as follows:\n\nLet $\\mathbf H\\in\\mathbb{F}_2^{(n-k)\\times n}$ be the parity-check matrix of a code of length $n$ and dimension $k$. Given $\\mathbf H$, a syndrome $\\mathbf{s}\\in\\mathbb{F}_2^{n-k}$ and an integer $\\omega \\mid n$ the regular syndrome decoding problem asks to find a vector $\\mathbf e=(\\mathbf e_1, \\mathbf e_2, \\ldots, \\mathbf e_\\omega)$ with $\\mathbf e_i \\in \\mathbb{F}_2^{\\frac n \\omega}$, satisfying $\\mathbf H \\mathbf e=\\mathbf s$ where each $\\mathbf e_i$ has Hamming weight exactly one.\n\nMore details on the theoretical foundations of the estimator can be found in the corresponding papers:\n\n*[[CCJ23]](https://link.springer.com/chapter/10.1007/978-3-031-30589-4_19) \nEliana Carozza, Geoffroy Couteau and Antoine Joux . Short Signatures from Regular Syndrome Decoding in the Head. [[eprint]](https://eprint.iacr.org/2023/1035.pdf)*\n\n*[[ES23]](https://eprint.iacr.org/2023/1568.pdf) Andre Esser and Paolo Santini. Not Just Regular Decoding: Asymptotics and Improvements of Regular Syndrome Decoding Attacks. [[eprint]](https://eprint.iacr.org/2023/1568.pdf)*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Code length (n)",
"placeholder": "Insert parameter",
"tooltip": "Code length of the specified code",
"validate_fields_ids": [
"k",
"w"
]
},
{
"id": "k",
"type": "number",
"display_label": "Code dimension (k)",
"placeholder": "Insert parameter",
"tooltip": "Code dimension of specified code",
"validate_fields_ids": [
"w"
],
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "w",
"type": "number",
"display_label": "Error weight (w)",
"placeholder": "Insert parameter",
"tooltip": "Hamming weight of the target solution (must divide the code length)",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
},
{
"action": "validateLessThanOperation",
"operation": "n - k"
}
]
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations"
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": []
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "SDFqEstimator",
"algorithm_id": "SDFqAlgorithm",
"display_label": "Syndrome Decoding over Fq",
"landing_page_content": "# Syndrome Decoding Estimator over $\\mathbf F_q$\n\n\nThis project provides an estimator for the hardness of the syndrome decoding problem over $\\mathbf F_q$. This problem is defined as follows:\n\nLet $\\mathbf H\\in\\mathbb{F}_q^{(n-k)\\times n}$ be the parity-check matrix of a code of length $n$ and dimension $k$. Given $\\mathbf H$, a syndrome $\\mathbf{s}\\in\\mathbb{F}_q^{n-k}$ and an integer $\\omega < n$ the syndrome decoding problem asks to find a vector $\\mathbf e \\in \\mathbb{F}_q^n$ satisfying $\\mathbf H \\mathbf e=\\mathbf s$ while $\\mathbf e$ has a Hamming weight smaller or equal to $\\omega$.\n\nThe estimator covers Information Set Decoding (ISD) algorithms to estimate the hardness of given instances.\n\nMore details on the theoretical foundations of the complexity of included algorithms can be found in\n\n*[[Pet11]](https://link.springer.com/chapter/10.1007/978-3-642-12929-2_7) Christiane Peters. Information-set decoding for linear codes over Fq. [[eprint]](https://eprint.iacr.org/2009/589.pdf)*\n\n*[[Ste89]](https://doi.org/10.1007/BFb0019850) Jacques Stern. A method for finding codewords of small weight.*\n\n*[[LB88]](https://doi.org/10.1007/3-540-45961-8\\_25) Pil Joong Lee and Ernest Brickell. An observation on the security of McEliece\u2019s public-key cryptosystem.*\n\n*[[Pra62]](https://doi.org/10.1109/TIT.1962.1057777) Eugene Prange. The use of information sets in decoding cyclic codes.*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Code length (n)",
"placeholder": "Insert parameter",
"tooltip": "Code length of the specified code",
"validate_fields_ids": [
"k",
"w"
]
},
{
"id": "k",
"type": "number",
"display_label": "Code dimension (k)",
"placeholder": "Insert parameter",
"tooltip": "Code dimension of specified code",
"validate_fields_ids": [
"w"
],
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "w",
"type": "number",
"display_label": "Error weight (w)",
"placeholder": "Insert parameter",
"tooltip": "Hamming weight of the target solution",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
},
{
"action": "validateLessThanOperation",
"operation": "n - k"
}
]
},
{
"id": "q",
"type": "number",
"display_label": "Base Field Size (q)",
"placeholder": "Insert parameter",
"tooltip": "Size of the underlying base field",
"dependencies": []
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found, if not specified it will be fixed to the number of solutions in expectation"
},
{
"id": "is_syndrome_zero",
"type": "selector",
"direction": "column",
"display_label": "Code word search",
"default_value": 1,
"tooltip": "Indicates if a small code word is searched, i.e., if the syndrome is equal to the zero.",
"options": [
"Syndrome decoding",
"Code word search"
]
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of field additions"
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": [
{
"id": "max_D",
"parent_contains": [
"Crossbred"
],
"action": "show"
}
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "PKEstimator",
"algorithm_id": "PKAlgorithm",
"display_label": "Permuted Kernel",
"landing_page_content": "# Permuted Kernel Estimator\n\nThis project provides an estimator for the hardness of the permuted kernel problem. This problem is defined as follows: \n\nGiven two matrices $\\mathbf{A} \\in \\; \\mathbb{F}_{q}^{m\\times n}$ and $\\mathbf{V} \\in \\; \\mathbb{F}_{q}^{\\ell \\times n}$, the permuted kernel problem asks to find a permutation $\\mathbf{P} \\in \\mathbb{F}_{q}^{m\\times n}$ such that $\\mathbf{A}(\\mathbf{V} \\mathbf{P})^\\top = 0$\n\nMore details on the theoretical foundations of the estimator can be found in the corresponding papers: \n\n*[[SBC22]](https://eprint.iacr.org/2022/1749.pdf) Paolo Santini, Marco Baldi, and Franco Chiaraluce. Computational hardness of the permuted kernel and subcode equivalence problems. [[eprint]](https://eprint.iacr.org/2022/1749.pdf)*\n\n*[[KMP19]](https://eprint.iacr.org/2019/412.pdf) Eliane Koussa, Gilles Macario-Rat and Jacques Patarin. On the complexity of the permuted kernel problem. Cryptology ePrint Archive, Report 2019/412 (2019). [[eprint]](https://eprint.iacr.org/2019/412.pdf)*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Number of columns (n)",
"placeholder": "Insert parameter",
"tooltip": "Number of columns of the input matrix"
},
{
"id": "m",
"type": "number",
"display_label": "Number of rows (m)",
"placeholder": "Insert parameter",
"tooltip": "Number of rows of the input matrix"
},
{
"id": "q",
"type": "number",
"display_label": "Field size (q)",
"placeholder": "Insert parameter",
"tooltip": "A prime number"
},
{
"id": "ell",
"type": "number",
"display_label": "No. of rows in the kernel (ell)",
"placeholder": "Insert value",
"default_value": 1,
"tooltip": "Number of rows of the matrix whose permutation should lie in the kernel"
},
{
"id": "use_parity_row",
"required": false,
"type": "switch",
"display_label": "Use parity row",
"default_value": true,
"tooltip": "Enables trick of appending extra (all one) row to the matrix, i.e., m -> m+1. Enable if you did not already increase m manually."
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
},
{
"id": "cost_for_list_operation",
"type": "number",
"display_label": "List operation cost (Time)",
"direction": "column",
"placeholder": "Insert value",
"tooltip": "Cost in Fq additions for one list operation in the SBC and KMP algorithms"
},
{
"id": "memory_for_list_element",
"type": "number",
"display_label": "List operation cost (Memory)",
"direction": "column",
"placeholder": "Insert value",
"tooltip": "Memory in Fq elements for one list element in the SBC and KMP algorithms"
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations"
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": []
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "PEEstimator",
"algorithm_id": "PEAlgorithm",
"display_label": "Permutation Equivalence",
"landing_page_content": "# Permutation Equivalence Estimator\n\nThis project provides an estimator for the hardness of the permutation equivalence problem. \n\nThis problem is defined as follows: Given two matrices $\\mathbf{G}, \\mathbf{G}' \\in \\; \\mathbb{F}_{q}^{k\\times n}$, the permuted equivalence problem asks to find an invertible matrix $\\mathbf{S} \\in \\; \\mathbb{F}_{q}^{k\\times n}$ and permutation matrix $\\mathbf{P} \\in \\; \\mathbb{F}_{q}^{n\\times n}$ such that $\\mathbf{G}' = \\mathbf{S}\\mathbf{G}\\mathbf{P}$.\n\nMore details on the theoretical foundations of the estimator can be found in the corresponding papers: \n\n*[[Beu20]](https://link.springer.com/chapter/10.1007/978-3-030-81652-0_15) Ward Beullens. Not enough LESS: An improved algorithm for solving code equivalence problems over Fq. [[eprint]](https://eprint.iacr.org/2020/801.pdf)*\n\n*[[Sen99]](https://inria.hal.science/inria-00073037/document) Nicolas Sendrier. On the dimension of the hull. SIAM Journal on Discrete Mathematics 10(2), 282\u2013293 (1997). [[preprint]](https://inria.hal.science/inria-00073037/document)*\n\n*[[Leo82]](https://ieeexplore.ieee.org/document/1056498) Jeffrey Leon. Computing automorphism groups of error-correcting codes. IEEE Transactions on Information Theory 28(3), 496\u2013511 (1982).*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Code length (n)",
"placeholder": "Insert parameter",
"tooltip": "Code length of the specified code",
"validate_fields_ids": [
"k"
]
},
{
"id": "k",
"type": "number",
"display_label": "Code dimension (k)",
"placeholder": "Insert parameter",
"tooltip": "Code dimension of specified code",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "q",
"type": "number",
"display_label": "Field size (q)",
"placeholder": "Insert parameter",
"tooltip": "A prime number"
},
{
"id": "h",
"type": "number",
"display_label": "Hull dimension",
"placeholder": "Insert parameter",
"tooltip": "The dimension of the hull"
},
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
}
],
"optional_parameters": [],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations"
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": []
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "LEEstimator",
"algorithm_id": "LEAlgorithm",
"display_label": "Linear Equivalence",
"landing_page_content": "# Linear Equivalence Estimator\n\nThis project provides an estimator for the hardness of the linear equivalence problem. \n\nThis problem is defined as follows: Given two matrices $\\mathbf{G}, \\mathbf{G}' \\in \\; \\mathbb{F}_{q}^{k\\times n}$, the linear equivalence problem asks to find an invertible matrix $\\mathbf{S} \\in \\; \\mathbb{F}_{q}^{k\\times n}$ and monomial matrix $\\mathbf{Q} \\in \\; \\mathbb{F}_{q}^{n\\times n}$ such that $\\mathbf{G}' = \\mathbf{S}\\mathbf{G}\\mathbf{P}$.\n\nMore details on the theoretical foundations of the estimator can be found in the corresponding papers: \n\n*[[BBPS22]](https://eprint.iacr.org/2022/967.pdf) Alessandro Barenghi, Jean-Francois Biasse, Edoardo Persichetti and Paolo Santini,. On the Computational Hardness of the Code Equivalence Problem in Cryptography. [[eprint]](https://eprint.iacr.org/2022/967.pdf)*\n\n*[[Beu20]](https://link.springer.com/chapter/10.1007/978-3-030-81652-0_15) Ward Beullens. Not enough LESS: An improved algorithm for solving code equivalence problems over Fq. [[eprint]](https://eprint.iacr.org/2020/801.pdf)*\n\n*[[Leo82]](https://ieeexplore.ieee.org/document/1056498) Jeffrey Leon. Computing automorphism groups of error-correcting codes. IEEE Transactions on Information Theory 28(3), 496\u2013511 (1982).*",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Code length (n)",
"placeholder": "Insert parameter",
"tooltip": "Code length of the specified code",
"validate_fields_ids": [
"k"
]
},
{
"id": "k",
"type": "number",
"display_label": "Code dimension (k)",
"placeholder": "Insert parameter",
"tooltip": "Code dimension of specified code",
"dependencies": [
{
"id": "n",
"action": "validateLessThan"
}
]
},
{
"id": "q",
"type": "number",
"display_label": "Field size (q)",
"placeholder": "Insert parameter",
"tooltip": "A prime number"
},
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "nsolutions",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Number of solutions",
"placeholder": "Insert value",
"caption": "Leave empty to take expected amount of solutions",
"tooltip": "Log2 of number of existing solutions of which one has to be found"
}
],
"optional_parameters": [],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,
"tooltip": "Show complexities as count of bit operations. If false, show number of elementary operations"
},
{
"id": "included_algorithms",
"type": "multiple_selector",
"direction": "column",
"display_label": "Included algorithms",
"tooltip": "Algorithms to include for optimization",
"default_value": [],
"excluded_algorithms": [],
"options": [],
"dependencies": []
},
{
"id": "memory_access",
"type": "selector",
"direction": "column",
"display_label": "Memory access cost",
"default_value": 0,
"tooltip": "Function that takes as input the memory bit complexity and outputs the associate algorithmic cost. Example, logarithmic memory access, input M, output M+log2M.",
"options": [
"Constant",
"Logaritmic",
"Square root",
"Cube root"
]
},
{
"id": "precision",
"type": "number",
"direction": "column",
"display_label": "Decimal precision",
"default_value": 0,
"placeholder": "Insert value",
"tooltip": "Number of decimal digits to display"
}
]
},
{
"estimator_id": "UOVEstimator",
"algorithm_id": "UOVAlgorithm",
"display_label": "UOV Signature Scheme",
"landing_page_content": "# UOV Estimator\n\n\nThis project provides an estimator for the security of the Unbalanced Oil and Vinegar (UOV) signature scheme. This scheme is mainly based on the hardness of the MQ problem and it was submitted as a candidate to the NIST call for post-quantum signatures. \n\nMore details on the theoretical foundations of the signature scheme and the estimator can be found in the submitted specifications:\n\n[[UOV23]](https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf) Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih Shih, Chengdong Tao and Bo-Yin Yang. UOV: Unbalanced Oil and Vinegar\nAlgorithm Specifications and Supporting Documentation. ",
"problem_parameters": [
{
"id": "n",
"type": "number",
"display_label": "Number of variables (n)",
"placeholder": "Insert parameter",
"tooltip": "The number of variables in the public key polynomials"
},
{
"id": "m",
"type": "number",
"display_label": "Number of equations (m)",
"placeholder": "Insert parameter",
"tooltip": "The number of polynomials in the public key"
},
{
"id": "q",
"type": "number",
"display_label": "Field size (q)",
"placeholder": "Insert parameter",
"tooltip": "An integer of the form p^x for some integer x, where p is prime number. This value indicates the number of elements in the underlying field"
}
],
"optional_parameters": [
{
"id": "memory_bound",
"required": false,
"type": "number",
"direction": "column",
"display_label": "Memory limit",
"default_value": null,
"placeholder": "Insert value",
"caption": "Leave empty if no limit is desired",
"tooltip": "Log2 of the maximum number of bits of memory available"
},
{
"id": "w",
"type": "slider",
"direction": "column",
"display_label": "Matrix multiplication constant",
"default_value": 2.81,
"tooltip": "Indicates that two square matrices of size n can be multiplied by performing O(n^w) field multiplications",
"min": 2,
"max": 3,
"number_of_decimals": 2,
"step": 0.01
}
],
"estimator_parameters": [
{
"id": "bit_complexities",
"type": "switch",
"display_label": "Bit complexities",
"default_value": true,