forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmri_create_RFsens.m
263 lines (235 loc) · 12.6 KB
/
hmri_create_RFsens.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
function jobsubj = hmri_create_RFsens(jobsubj)
% RF sensitivity calculation as part of the hmri toolbox
% Based on a script by Daniel Papp
% Wellcome Trust Centre for Neuroimaging (WTCN), London, UK.
% Adapted by Dr. Tobias Leutritz
%
% Description:
% This script removes the coil sensitivty driven signal
% intensity modulation of MPM images. This is done as to correct for the
% different modulation of scans in case of inter-scan motion.
% Also the case of only one acquistion per session is handled accordingly.
%
% Outputs:
% corrected echoes, called sMT_manualnorm_echo-1, and the appropriate
% three "sensitivty maps", called MT_32ch_over_BC, or appropriate PD/T1
%
% Reference:
% D. Papp et al.: "Correction of Inter-Scan Motion Artifacts in
% Quantitative R1 Mapping by Accounting for Receive Coil Sensitivity
% Effects", MRM 2015 DOI 10.1002/mrm.26058
flags = jobsubj.log.flags;
flags.PopUp = false;
hmri_log(sprintf('\t============ RF SENSITIVITY CORRECTION - %s.m (%s) ============', mfilename, datestr(now)),flags);
%==========================================================================
% Define processing parameters, defaults, input files...
%==========================================================================
rfsens_params = get_rfsens_params(jobsubj);
% for convenience:
calcpath = rfsens_params.calcpath;
supplpath = rfsens_params.supplpath;
smooth_kernel = rfsens_params.smooth_kernel;
json = rfsens_params.json;
% Proceeds for each contrast
for ccon = 1:rfsens_params.ncon
% Input sensitivity maps: a pair of head coil/body coil sensitivity maps,
% either acquired once for the whole protocol, or once per contrast (MT,
% PD, T1):
sensmaps = rfsens_params.input(ccon).sensfnam;
% Input MTw, PDw, T1w multiecho images:
structurals = rfsens_params.input(ccon).fnam;
%==========================================================================
% Coregistering the images: each sensmap onto the corresponding structural
%==========================================================================
coregmaps = coreg_sens_to_struct_images(structurals(1,:), sensmaps, calcpath, rfsens_params.input(ccon).tag);
%==========================================================================
% Smoothing the coregistered images
%==========================================================================
smoothedmaps = smooth_sens_images(coregmaps, smooth_kernel);
%==========================================================================
% Calculate quantitative RF sensitivity maps (HC/BC division)
%==========================================================================
qsensmap = spm_imcalc(smoothedmaps, fullfile(calcpath, sprintf('sensMap_HC_over_BC_division_%s.nii',rfsens_params.input(ccon).tag)), 'i1./i2');
qsensmap = qsensmap.fname;
% set metadata
input_files = sensmaps;
Output_hdr = init_rfsens_output_metadata(input_files, rfsens_params);
Output_hdr.history.output.imtype = sprintf('Quantitative RF sensitivity map (HC/BC) for %sw images',rfsens_params.input(ccon).tag);
set_metadata(qsensmap,Output_hdr,json);
%==========================================================================
% Normalise all input multi-echo images using the p.u. sensitivity maps
%==========================================================================
nSTRUCT = size(structurals,1);
corrected_structurals = cell(nSTRUCT,1);
for i=1:nSTRUCT
corrected_structurals{i} = fullfile(calcpath, spm_file(spm_file(structurals(i,:),'filename'),'suffix','_RFSC'));
spm_imcalc({structurals(i,:), qsensmap}, corrected_structurals{i}, 'i1./i2');
% set metadata (relates only to original inputs to keep it
% readable and trackable since intermediate calculation directories
% might be cleaned up)
input_files = char(structurals(i,:), sensmaps);
Output_hdr = init_rfsens_output_metadata(input_files, rfsens_params);
Output_hdr.history.output.imtype = sprintf('RF sensitivity corrected %s-weighted echo',rfsens_params.input(ccon).tag);
Output_hdr.history.output.units = 'a.u.';
Output_hdr.acqpar = struct('RepetitionTime',get_metadata_val(structurals(i,:),'RepetitionTime'), ...
'EchoTime',get_metadata_val(structurals(i,:),'EchoTime'), ...
'FlipAngle',get_metadata_val(structurals(i,:),'FlipAngle'));
set_metadata(corrected_structurals{i},Output_hdr,json);
end
%==========================================================================
% Finalise output
%==========================================================================
% copy quantitative RF sensitivity maps in Supplementary folder
copyfile(qsensmap,fullfile(supplpath,spm_file(qsensmap,'filename')));
try copyfile([spm_str_manip(qsensmap,'r') '.json'],fullfile(supplpath,[spm_file(qsensmap,'basename'), '.json'])); end %#ok<*TRYNC>
% substitute the corrected maps to the output structure
jobsubj.raw_mpm.(rfsens_params.input(ccon).tag) = char(corrected_structurals);
end
% save RF sensitivity processing parameters
spm_jsonwrite(fullfile(supplpath,'hMRI_map_creation_rfsens_params.json'),rfsens_params,struct('indent','\t'));
hmri_log(sprintf('\t============ RF SENSITIVITY CORRECTION: completed (%s) ============', datestr(now)),rfsens_params.nopuflags);
end
%% =======================================================================%
% Sort out all parameters required for the RFsens calculation.
%=========================================================================%
function rfsens_params = get_rfsens_params(jobsubj)
% flags for logging information and warnings
rfsens_params.defflags = jobsubj.log.flags; % default flags
rfsens_params.nopuflags = jobsubj.log.flags; % force no Pop-Up
rfsens_params.nopuflags.PopUp = false;
rfsens_params.json = hmri_get_defaults('json');
rfsens_params.calcpath = jobsubj.path.rfsenspath;
rfsens_params.respath = jobsubj.path.respath;
rfsens_params.supplpath = jobsubj.path.supplpath;
rfsens_params.smooth_kernel = hmri_get_defaults('RFsens.smooth_kernel');
% save SPM version (slight differences may appear in the results depending
% on the SPM version!)
[v,r] = spm('Ver');
rfsens_params.SPMver = sprintf('%s (%s)', v, r);
% Input structurals: determine which contrasts are available
ccon = 0;
% 1) try MTw contrast:
tmpfnam = spm_file(char(jobsubj.raw_mpm.MT),'number',''); % P_mtw
if isempty(tmpfnam)
rfsens_params.MTidx = 0; % zero index means no contrast available
else
ccon = ccon+1;
rfsens_params.input(ccon).fnam = tmpfnam;
rfsens_params.input(ccon).tag = 'MT';
rfsens_params.MTidx = ccon;
end
% 2) try PDw contrast:
tmpfnam = spm_file(char(jobsubj.raw_mpm.PD),'number',''); % P_pdw
if isempty(tmpfnam)
rfsens_params.PDidx = 0; % zero index means no contrast available
else
ccon = ccon+1;
rfsens_params.input(ccon).fnam = tmpfnam;
rfsens_params.input(ccon).tag = 'PD';
rfsens_params.PDidx = ccon;
end
% 3) try T1w contrast:
tmpfnam = spm_file(char(jobsubj.raw_mpm.T1),'number',''); % P_t1w
if isempty(tmpfnam)
rfsens_params.T1idx = 0; % zero index means no contrast available
else
ccon = ccon+1;
rfsens_params.input(ccon).fnam = tmpfnam;
rfsens_params.input(ccon).tag = 'T1';
rfsens_params.T1idx = ccon; % zero index means no contrast available
end
rfsens_params.ncon = ccon; % number of contrasts available
clear tmpfnam;
% Input sensitivity maps: a pair of head coil/body coil sensitivity maps,
% either acquired once for the whole protocol, or once per contrast (MT,
% PD, T1). We first copy them to the calcpath directory to avoid working on
% raw data:
if isfield(jobsubj.sensitivity,'RF_once')
for i=1:length(jobsubj.sensitivity.RF_once)
tmprawfnam = spm_file(jobsubj.sensitivity.RF_once{i},'number','');
tmpfnam{i} = fullfile(rfsens_params.calcpath,spm_file(tmprawfnam,'filename'));
copyfile(tmprawfnam, tmpfnam{i});
try copyfile([spm_str_manip(tmprawfnam,'r') '.json'],[spm_str_manip(tmpfnam{i},'r') '.json']); end
end
for ccon = 1:rfsens_params.ncon
rfsens_params.input(ccon).sensfnam = char(tmpfnam);
end
rfsens_params.senstype = 'RF_once: single set of RF sensitivity maps acquired for all contrasts';
elseif isfield(jobsubj.sensitivity,'RF_per_contrast')
for ccon = 1:rfsens_params.ncon
raw_sens_field = sprintf('raw_sens_%s',rfsens_params.input(ccon).tag);
raw_sens_input = jobsubj.sensitivity.RF_per_contrast.(raw_sens_field);
if isempty(raw_sens_input)
hmri_log(sprintf(['ERROR: when using per-contrast RF sensitivity correction, ' ...
'\nRF sensitivity maps must be provided for each contrast available. '...
'\nNo RF sensitivity map was found for %sw-contrast. Check you properly ' ...
'\nset the RF sensitivity inputs in your batch, or use "Single" mode ' ...
'\nwith a single set of RF sensitivity maps if you don''t have RF' ...
'\nsensitivity data for each contrast.\n'], ...
rfsens_params.input(ccon).tag), rfsens_params.defflags);
error('Missing RF sensitivity input(s). Aborting.');
end
for csens=1:length(raw_sens_input)
tmprawfnam = spm_file(raw_sens_input{csens},'number','');
tmpfnam{csens} = fullfile(rfsens_params.calcpath,spm_file(tmprawfnam,'filename'));
copyfile(tmprawfnam, tmpfnam{csens});
try copyfile([spm_str_manip(tmprawfnam,'r') '.json'],[spm_str_manip(tmpfnam{csens},'r') '.json']); end
end
rfsens_params.input(ccon).sensfnam = char(tmpfnam);
end
rfsens_params.senstype = 'RF_per_contrast: one sensitivity data set acquired per contrast (i.e. T1/PD/MT-weighted images)';
else
error('RF sensitivity correction: no RF sensitivity data provided.');
end
end
%% =======================================================================%
% To arrange the metadata structure for RFsens calculation output (can be
% adapted for each output separately, here are the most common defaults).
%=========================================================================%
function metastruc = init_rfsens_output_metadata(input_files, rfsens_params)
proc.descrip = ['hMRI toolbox - ' mfilename '.m - RF sensitivity correction'];
proc.version = hmri_get_version;
proc.params = rfsens_params;
output.imtype = 'sensitivity map';
output.units = 'p.u.';
metastruc = init_output_metadata_structure(input_files, proc, output);
end
%% =======================================================================%
% Smoothing images
%=========================================================================%
function smoosensfnam = smooth_sens_images(inputfnam, smookernel)
clear matlabbatch
matlabbatch{1}.spm.spatial.smooth.data = inputfnam;
matlabbatch{1}.spm.spatial.smooth.fwhm = smookernel*[1 1 1];
matlabbatch{1}.spm.spatial.smooth.prefix = sprintf('smooth%d_', smookernel);
output_list = spm_jobman('run',matlabbatch);
smoosensfnam = output_list{1}.files;
clear matlabbatch
end
%% =======================================================================%
% Coregister sensitivity images onto structural images. Coregistration is
% done for HeadCoil and BodyCoil images separately. A tag corresponding to
% the contrast (MT/PD/T1) is added to avoid overwriting data when the same
% sensitivity map is used for each contrast.
%=========================================================================%
function coregsensfnam = coreg_sens_to_struct_images(strucfnam, sensfnam, calcpath, tag)
clear matlabbatch
for i = 1:size(sensfnam,1)
matlabbatch{1}.spm.spatial.coreg.estwrite.ref = {deblank(strucfnam(1,:))};
matlabbatch{1}.spm.spatial.coreg.estwrite.source = {deblank(sensfnam(i,:))};
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = sprintf('r%s_',tag);
matlabbatch{1}.spm.spatial.coreg.estwrite.other = {''};
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.sep = [2 1];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.fwhm = [7 7];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 4;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.wrap = [0 0 0];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.mask = 0;
output_list = spm_jobman('run',matlabbatch);
coregsensfnam{i} = fullfile(calcpath, spm_file(output_list{1}.rfiles{1},'filename')); %#ok<AGROW>
end
coregsensfnam = coregsensfnam'; % must be a nx1 cellstr
clear matlabbatch
end