forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmri_run_proc_US.m
233 lines (208 loc) · 8.03 KB
/
hmri_run_proc_US.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
function out = hmri_run_proc_US(job)
% Deal with the spatial preprocessing, 1 subject at a time: segmentation of
% the MT and T1 images
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by Christophe Phillips
% but largely inspired by the batch from the past VBQ toolbox.
% Turning data organization from "per image type" into "per subject"
% because data are processed subject per subject.
% This relies alos on the previous toolbox, which allowed explicitly for a
% "per subject" setting of the data, so here we keep about the same code.
job = preproc_perimage_to_persubject(job);
% Initiliazign the output structure 'out'
% .tiss : struct-array with subfields
% .c and .rc, for the native and Dartel imported
% .wc and .mwc, for the warped and modulated
% tissue class images
% .maps : struct-array with subfields 'wvols_pm' for the warped parametric
% maps
% .def : cell-array with the deformations for each subject.
for i=1:numel(job.tissue)
out.tiss(i).c = {};
out.tiss(i).rc = {};
out.tiss(i).wc = {};
out.tiss(i).mwc = {};
end
if numel(job.subjc(1).maps.vols_pm)
for i=1:numel(job.subjc(1).maps.vols_pm)
out.maps(i).wvols_pm = {};
end
else
out.maps.wvols_pm = {};
end
out.def.fn = {};
% looping over all the subjects.
for nm = 1:length(job.subjc)
% Figure out where results are written out -> dn_output
% and create it of needs be (per-subject option)
same_dir = false;
% pathes to struct image and parametric maps, could be different ones.
struc_path = spm_file(job.subjc(nm).channel(1).vols{1},'path');
if ~isempty(job.subjc(nm).maps.vols_pm)
data_path = spm_file(job.subjc(nm).maps.vols_pm{1},'path');
else
data_path = struc_path;
end
if isfield(job.subjc(nm).output,'indir') && ...
job.subjc(nm).output.indir == 1
same_dir = true;
dn_output = data_path;
elseif isfield(job.subjc(nm).output,'outdir')
dn_output = job.subjc(nm).output.outdir{1};
elseif isfield(job.subjc(nm).output,'outdir_ps')
% Get the subjects directory name, from data_ or struct_path???
dn_subj = get_subject_dn(data_path);
dn_output = fullfile(job.subjc(nm).output.outdir_ps{1},dn_subj);
if ~exist(dn_output,'dir')
% Create subject sub-directory if necessary
mkdir(dn_output);
end
end
% Prepare and run 'spm_preproc' -> get tissue maps + deformation
defsa.channel = job.subjc(nm).channel;
defsa.tissue = job.tissue;
defsa.warp = job.warp;
defsa.warp.vox = mean(job.many_sdatas.vox);
defsa.warp.bb = job.many_sdatas.bb;
out.subjc(nm) = spm_preproc_run(defsa);
% Move segmentation output (if requested) and update 'out' structure:
% all *c*.nii images, deformation field (y_*.nii), parameters
% (*_seg8.mat), and bias corrections (m*.nii & BiasField_*.nii)
if ~same_dir
l_filter = {'^c[\d].*\.nii$','^rc[\d].*\.nii$', ...
'^wc[\d].*\.nii$','^mwc[\d].*\.nii$','^y_.*\.nii$', ...
'^.*_seg8.mat$','^BiasField_.*\.nii$'}; % ,'^m.*\.nii$'};
f2move = spm_select('FPList',struc_path,l_filter);
for ii=1:size(f2move,1)
movefile(deblank(f2move(ii,:)),dn_output);
end
% Carefull with m*.nii files, which could be original
% -> check channels
if ~isempty(out.subjc(nm).channel)
for ii = 1:numel(out.subjc(nm).channel)
if ~isempty(out.subjc(nm).channel(ii).biascorr)
movefile(out.subjc(nm).channel(ii).biascorr{1},dn_output);
end
end
end
% Get the filenames updated
out.subjc(nm) = update_path(out.subjc(nm),dn_output);
end
% Apply deformation on maps + get deformation map name
defs.comp{1}.def = out.subjc(nm).fordef;
% defs.ofname = '';
if numel(job.subjc(nm).maps.vols_pm)
defs.out{1}.pull.fnames = cellstr(char(char(job.subjc(nm).maps.vols_pm{:})));
defs.out{1}.pull.savedir.saveusr{1} = dn_output;
defs.out{1}.pull.interp = 1;
defs.out{1}.pull.mask = 1;
defs.out{1}.pull.fwhm = [0 0 0]; % no smoothing requester,
% though at least vx_size/4 smoothing will still be applied!
outdef = spm_deformations(defs);
else
outdef.warped = {};
end
% Save filenames as apropriate for 'out', keeping track of moved files!
for i=1:numel(out.subjc(1).tiss)
if isfield(out.subjc(nm).tiss(i), 'c')
out.tiss(i).c = [out.tiss(i).c; out.subjc(nm).tiss(i).c];
end
if isfield(out.subjc(nm).tiss(i), 'rc')
out.tiss(i).rc = [out.tiss(i).rc; out.subjc(nm).tiss(i).rc];
end
if isfield(out.subjc(nm).tiss(i), 'wc')
out.tiss(i).wc = [out.tiss(i).wc; out.subjc(nm).tiss(i).wc];
end
if isfield(out.subjc(nm).tiss(i), 'mwc')
out.tiss(i).mwc = [out.tiss(i).mwc; out.subjc(nm).tiss(i).mwc];
end
end
for i=1:numel(outdef.warped)
out.maps(i).wvols_pm{end+1,1} = outdef.warped{i};
end
out.def.fn{end+1,1} = defs.comp{1}.def{1};
end
end
% ========================================================================
%% SUBFUNCTIONS
% ========================================================================
function job = preproc_perimage_to_persubject(job)
% Rearrange data per subject for further preprocessing.
% Number of subjects from 1st set of structurals for segmentation
nSubj = numel(job.many_sdatas.channel(1).vols);
nChan = numel(job.many_sdatas.channel);
nPara = numel(job.many_sdatas.vols_pm);
for ii = 1:nSubj
job.subjc(ii).output = job.many_sdatas.output;
% Collect structurals
job.subjc(ii).channel = job.many_sdatas.channel;
for jj = 1:nChan
job.subjc(ii).channel(jj).vols = job.many_sdatas.channel(jj).vols(ii);
end
% Collect parametric maps to warp, if any
job.subjc(ii).maps.vols_pm = {};
for kk = 1:nPara
job.subjc(ii).maps.vols_pm{end+1,1} = ...
job.many_sdatas.vols_pm{kk}{ii};
end
end
end
%_______________________________________________________________________
function subjc_o = update_path(subjc_i,dn_output)
% Function to update the path of created files, when results are moved to
% another directory.
subjc_o = subjc_i; % At worst keep the same...
% Channel
if ~isempty(subjc_i.channel)
% deal with 'biasfield' and 'biascorr' path
for ii=1:numel(subjc_i.channel)
subjc_o.channel(ii) = update_struct_path(subjc_i.channel(ii),dn_output);
end
end
% Tissue
if ~isempty(subjc_i.tiss)
for ii=1:numel(subjc_i.tiss)
subjc_o.tiss(ii) = update_struct_path(subjc_i.tiss(ii),dn_output);
end
end
% Parameters
if ~isempty(subjc_i.param)
subjc_o.param = spm_file(subjc_i.param,'path',dn_output);
end
% Inverse deformation
if ~isempty(subjc_i.invdef)
subjc_o.invdef = spm_file(subjc_i.invdef,'path',dn_output);
end
% Forward deformation
if ~isempty(subjc_i.fordef)
subjc_o.fordef = spm_file(subjc_i.fordef,'path',dn_output);
end
end
%_______________________________________________________________________
function st_o = update_struct_path(st_i,dn_o)
% Small function to update the path of filenames stored in subfield of an
% input structure 'st_i'.
field_nm = fieldnames(st_i);
st_o = st_i;
for ii = 1:numel(field_nm)
if ~isempty(st_i.(field_nm{ii}))
st_o.(field_nm{ii}) = spm_file(st_i.(field_nm{ii}),'path',dn_o);
end
end
end
%_______________________________________________________________________
function dn_subj = get_subject_dn(data_path)
% Extract the subject's directory name from the path to its data
% Fist split the path into its sub-parts
l_fsep = strfind(data_path,filesep);
n_fsep = numel(l_fsep);
lp_fsep = [0 l_fsep length(data_path)+1];
pth_parts = cell(1,n_fsep);
for ii=1:(n_fsep+1)
pth_parts{ii} = data_path(lp_fsep(ii)+1:lp_fsep(ii+1)-1);
end
% Pick up last one
dn_subj = pth_parts{end};
end
%_______________________________________________________________________