-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_judgements.py
214 lines (175 loc) · 8.31 KB
/
gen_judgements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Usage:
python gen_judgment.py
"""
from utils_model import *
import argparse
import jsonlines
import concurrent.futures
import openai
import tqdm
import random
import os
def read_jsonl_from_path(file_path):
with jsonlines.open(file_path) as reader:
dataset = [obj for obj in reader]
# print('Num of data:', len(dataset))
return dataset
def write_jsonl_to_path(data, file_path):
print('Num of data:', len(data))
with jsonlines.open(file_path, mode='w') as writer:
writer.write_all(data)
type2aspects = read_jsonl_from_path('./prompts/priority-aspects.jsonl')[0]
# print(type2aspects['coding'])
def before_retry_fn(retry_state):
if retry_state.attempt_number > 1:
print(f"Retrying API call. Attempt #{retry_state.attempt_number}, f{retry_state}")
def format_eval(data, judge_prompt, model_name, turn):
messages = []
for conv in data:
if turn == 1:
sample = {
"question": conv['user_1'],
"answer": conv[model_name + '_1'],
"reference": conv['reference_1'],
"priority_aspect": type2aspects[conv['type']]
}
template = judge_prompt["seabench-turn1-ref-updated"]
elif turn == 2:
sample = {
"question_1": conv['user_1'],
"answer_1": conv[model_name + '_1'],
"question_2": conv['user_2'],
"answer_2": conv[model_name + '_2'],
"reference": conv['reference_2'],
"priority_aspect": type2aspects[conv['type']]
}
template = judge_prompt["seabench-turn2-ref-updated"]
else:
raise NotImplementedError
filled_template = template["prompt_template"].format(**sample)
message = [
{"role": "system", "content": template["system_prompt"]},
{"role": "user", "content": filled_template}
]
messages.append(message)
#print('\n\n', messages, '\n\n')
return messages
def make_judge_single(data, judge_prompts, args):
# use reference answer by default
if args.reference_answer:
print("\nWill judge with reference answer\n")
else:
raise NotImplementedError
output_file = f"./{args.judgement_dir}/{args.judge_model.split('/')[-1]}_eval_{args.testing_model}_single.jsonl"
if os.path.exists(output_file):
if args.update:
if args.unit_ids is not None:
unit_ids = set(args.unit_ids.split(','))
print(f"Output file {output_file} exists. Updating the responses with unit_ids {unit_ids}")
data_old = read_jsonl_from_path(output_file)
data = [q for q in data if q['unit_id'] in unit_ids]
data_old = [q for q in data_old if q['unit_id'] not in unit_ids]
else:
print(f"Output file {output_file} exists. Updating all the responses")
else:
data = read_jsonl_from_path(output_file)
print(f"Output file {output_file} exists. Skipping the model")
return data
for turn in range(2):
# eval the first turn
print(f"begin the {turn}-th turn eval...")
# output_turn = f"./model_judgement/{args.judge_model}_eval_{args.testing_model}_single_turn{turn}.jsonl"
# if os.path.exists(output_turn):
# print(f"skip the {turn}-th turn eval...")
# # read jsonl file to data
# data_turn = read_jsonl_from_path(output_turn)
# for idx in range(len(data)):
# data[idx][f'eval_{turn+1}'] = data_turn[idx][f'eval_{turn+1}']
# continue
eval_prompts = format_eval(data, judge_prompts, args.testing_model, turn+1)
# prompt_args = [(api_key, p, args) for p in eval_prompts]
prompt_args = [(api_key, p, args.judge_model,args.max_tokens, args.temperature ) for p in eval_prompts]
dic_parallel_call = {
'openai': parallel_query_chatgpt_model,
'azure': parallel_query_chatgpt_model_azure,
'openrouter': parallel_query_openrouter_model
}
parallel_call = dic_parallel_call[args.judge_model_type]
# if args.judge_model_type == 'openai':
# parallel_call = parallel_query_chatgpt_model
# else:
# parallel_call = parallel_query_chatgpt_model_azure
with concurrent.futures.ThreadPoolExecutor(max_workers=args.max_workers) as executor:
predictions = list(tqdm.tqdm(executor.map(parallel_call, prompt_args), total=len(prompt_args), desc=f"Conducting inference"))
# merge the answers to the data
for idx in range(len(predictions)):
data[idx][f'eval_{turn+1}'] = predictions[idx]
# if turn == 0:
# write_jsonl_to_path(data, f"./model_judgement/{args.judge_model.split('/')[-1]}_eval_{args.testing_model}_single_turn{turn}.jsonl")
if args.update and args.unit_ids is not None:
data = data_old + data
data = sorted(data, key=lambda x: int(x['unit_id'].split('-')[-1]))
return data
else:
return data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--judge_file", type=str, default="prompts/judge_prompts.jsonl")
parser.add_argument("--judge_model", type=str, default="gpt-4o-2024-08-06")
parser.add_argument("--judge_model_type",default='openai', choices=['openai', 'azure', 'openrouter'],
type=str, help='judge model endpoint, openai or azure')
parser.add_argument("--testing_model", type=str, default="chatgpt")
parser.add_argument("--baseline_model", type=str, default="gpt-3.5-turbo")
parser.add_argument("--debug", type=bool, default=False)
parser.add_argument("--mode", type=str, default="single", \
choices=["pairwise-baseline", "pairwise-all", "single"],
help=(
"Evaluation mode. "
"`pairwise-baseline` runs pairwise comparision against a baseline. "
"`pairwise-all` runs pairwise comparision between all pairs. "
"`single` runs single answer grading."
),
)
parser.add_argument("--reference_answer", type=bool, default=True)
parser.add_argument("--api_key", type=str, default=None)
parser.add_argument("--max_tokens", type=int, default=1024)
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--max_workers", type=int, default=10)
parser.add_argument('--response_dir', type=str, default='outputs', help='response directory')
parser.add_argument('--judgement_dir', type=str, default='model_judgement', help='judgement directory')
parser.add_argument('--update', type=int, default=0, help='whether update output file')
parser.add_argument('--unit_ids', type=str, default=None, help='unit ids to update, if None, update all the questions')
args = parser.parse_args()
dic_keys = {
'openai': os.getenv("OPENAI_API_KEY"),
'azure': os.getenv("AZURE_OPENAI_KEY"),
'openrouter': os.getenv("OPENROUTER_API_KEY")
}
if args.api_key:
api_key = args.api_key
else:
api_key = dic_keys[args.judge_model_type]
# api_key = os.environ["OPENAI_API_KEY"] if args.judge_model_type == 'openai' else os.environ["AZURE_OPENAI_KEY"]
# load data (questions, refs, model gens)
args.testing_model = args.testing_model.split('/')[-1]
model_name = args.testing_model
data_path = f"./{args.response_dir}/{model_name}.jsonl"
data = read_jsonl_from_path(data_path)
# debug: only take part of the data for checking the sanity
# if args.debug:
# data = random.sample(data, 10)
# load judge
judge_prompts_lines = read_jsonl_from_path(args.judge_file)
judge_prompts = {}
for p in judge_prompts_lines:
judge_prompts[p['name']] = p
os.makedirs(f"./{args.judgement_dir}", exist_ok=True)
print(f"Begin to judge {args.testing_model} with {args.judge_model}...")
if args.mode == "single":
judges = make_judge_single(data, judge_prompts, args)
# output_file = f"./model_judgement/gpt4t_eval_{args.testing_model}_single.jsonl"
output_file = f"./{args.judgement_dir}/{args.judge_model.split('/')[-1]}_eval_{args.testing_model}_single.jsonl"
write_jsonl_to_path(judges, output_file)
else:
raise NotImplementedError