-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtile_generator.py
1101 lines (896 loc) · 46.8 KB
/
tile_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# System
import json
import multiprocessing
import os
import warnings
# Advanced
import xml.etree.ElementTree as ET
from argparse import ArgumentParser
from pathlib import Path
import pandas as pd
import cv2
import matplotlib.pyplot as plt
# Numpy
import numpy as np
# Image Processing
from PIL import Image
# # Fix to get the dlls to load properly under python >= 3.8 and windows
script_dir = os.path.dirname(os.path.realpath(__file__))
try:
openslide_dll_path = os.path.join(script_dir, "..", "openslide-win64-20171122", "bin")
os.add_dll_directory(openslide_dll_path)
# print(openslide_dll_path)
except Exception as e:
pass
# noinspection PyPep8
import openslide
# Custom
# noinspection PyPep8
import tissue_detection
_MULTIPROCESS = True
global lock
class WSIHandler:
def __init__(self, config_path="resources/config.json"):
self.slide = None
self.output_path = None
self.total_width = 0
self.total_height = 0
self.levels = 0
self.current_level = 0
self.annotation_list = None
self.annotation_dict = None
self.config = self.load_config(config_path)
assert "save_annotated_only" in self.config.keys()
self.annotated_only = self.config["save_annotated_only"]
self.scanner = None
self.res_x = None
self.res_y = None
self.validate_label_dict()
def validate_label_dict(self):
self.check_at_most_one_unannotated_label()
self.check_unannotated_label_first()
def check_at_most_one_unannotated_label(self):
label_dict = self.config["label_dict"]
unannotated_labels = []
for label, label_config in label_dict.items():
if not label_config["annotated"]:
unannotated_labels.append(label)
assert len(unannotated_labels) < 2, (f"More than one label (=tissue type) is marked as unannotated in the "
f"config.label_dict. Please make sure that at most one type (usually "
f"non-tumor) is marked as unannotated. The labels in question are "
f"{unannotated_labels}.")
def check_unannotated_label_first(self):
label_dict = self.config["label_dict"]
for label in list(label_dict)[1:]:
assert label_dict[label]["annotated"], (f"WSIHandler requires the unannotated label to be located in the "
f"first position in config.label_dict. Please move the unannotated "
f"tissue type '{label}' to the first position.")
def print_and_log_slide_error(self, slide_name, error_msg, method_name):
print(f"Error in slide {slide_name}. The error is: {type(error_msg).__name__}: {error_msg} in method: "
f"{method_name}.")
with lock:
with open(os.path.join(self.config["output_path"], "error_log.txt"), "a") as f:
f.write(f"Error in slide {slide_name}. The error is: {type(error_msg).__name__}: {error_msg} in "
f"method: {method_name}.")
@staticmethod
def load_config(config_path):
assert os.path.exists(config_path), "Cannot find " + config_path
with open(config_path) as json_file:
config = json.load(json_file)
assert 1 >= config["tissue_coverage"] >= 0, "Tissue coverage must be between 1 and 0"
assert config["blocked_threads"] >= 0
assert config["patches_per_tile"] >= 1, "Patches per tile must be >= 1"
assert 0 <= config["overlap"] < 1, "Overlap must be between 1 and 0"
assert config["annotation_overlap"] >= 0 and config["overlap"] < 1, "Annotation overlap must be between 1 and 0"
return config
def load_slide(self, slide_path):
self.slide = openslide.OpenSlide(slide_path)
self.total_width = self.slide.dimensions[0]
self.total_height = self.slide.dimensions[1]
self.levels = self.slide.level_count - 1
processing_level = self.config["processing_level"]
if self.levels < self.config["processing_level"]:
print("###############################################")
print(
"WARNING: Processing level above highest available slide level. Maximum slide level is "
+ str(self.levels)
+ ", processing level is "
+ str(self.config["processing_level"])
+ ". Setting processing level to "
+ str(self.levels)
)
print("###############################################")
processing_level = self.levels
return processing_level
def load_annotation(self, annotation_path):
annotation_dict = {}
file_format = Path(annotation_path).suffix
# QuPath exports
if file_format == ".geojson" or file_format == ".txt":
with open(annotation_path) as annotation_file:
annotations = json.load(annotation_file)
for polygon_nb in range(len(annotations["features"])):
if annotations["features"][polygon_nb]["geometry"]["type"] == "Polygon":
if (annotations["features"][polygon_nb]["properties"]["classification"]["name"] in
self.config["label_dict"].keys()):
annotation_dict.update({polygon_nb: {
"coordinates": annotations["features"][polygon_nb]["geometry"]["coordinates"][0],
"tissue_type": annotations["features"][polygon_nb]["properties"]["classification"][
"name"]}})
else:
warnings.warn(f'Unknown annotation type in file {annotation_file.name}: The annotation label '
f'"{annotations["features"][polygon_nb]["properties"]["classification"]["name"]}"'
f' is not part of the provided label dictionary '
f'(keys: {list(self.config["label_dict"].keys())}. Skipping.')
else:
warnings.warn(f'Not implemented warning in file {annotation_file.name}: The handling of the QuPath '
f'annotation type {annotations["features"][polygon_nb]["geometry"]["type"]} '
f'(id:{annotations["features"][polygon_nb]["id"]}) has not been implemented, yet. '
f'Skipping.')
# xml for CAMELYON17
elif file_format == ".xml":
tree = ET.parse(annotation_path)
root = tree.getroot()
for elem in root:
polygon_nb = 0
for subelem in elem:
items = subelem.attrib
if "Type" in items.keys():
if items["Type"] == "Polygon":
polygon_list = []
for coordinates in subelem:
for coord in coordinates:
polygon_list.append([float(coord.attrib["X"]), float(coord.attrib["Y"])])
# all annotationy in CAMELYON17 are tumor, so this is a pseudo label
annotation_dict.update({polygon_nb: {"coordinates": polygon_list, "tissue_type": "Tumor"}})
polygon_nb += 1
else:
return None
return annotation_dict
def get_img(self, level=None, show=False):
if level is None:
level = self.levels
dims = self.slide.level_dimensions[level]
image = np.array(self.slide.read_region((0, 0), level, dims))
if show:
# Katja: fix for Wayland issue on my Ubuntu:
# run 'export QT_QPA_PLATFORM=xcb' before opening pycharm (in the same terminal)
plt.imshow(image)
plt.title("Slide image")
plt.show()
return image, level
def apply_tissue_detection(self, level=None, show=False):
if level is not None:
image, level = self.get_img(level, show)
else:
image, level = self.get_img(show=show)
tissue_mask = tissue_detection.tissue_detection(image, remove_top_percentage=0)
if show:
plt.imshow(tissue_mask)
plt.title("Tissue Mask")
plt.show()
return tissue_mask, level
def determine_tile_size(self, level):
if self.config["calibration"]["use_non_pixel_lengths"]:
tile_size_0 = (self.config["calibration"]["patch_size_microns"] / self.res_x) * self.config[
"patches_per_tile"
]
else:
tile_size_0 = self.config["patches_per_tile"] * self.config["patch_size"]
downscale_factor = int(self.slide.level_downsamples[level])
tile_size = int(tile_size_0 / downscale_factor)
assert self.config["patches_per_tile"] >= 1, "Patches per tile must be greater than 1."
return tile_size
def get_relevant_tiles(self, tissue_mask, tile_size, min_coverage, level, show=False):
rows, row_residue = divmod(tissue_mask.shape[0], tile_size)
cols, col_residue = divmod(tissue_mask.shape[1], tile_size)
if row_residue:
rows += 1
if col_residue:
cols += 1
if self.config["use_tissue_detection"]:
colored = cv2.cvtColor(tissue_mask, cv2.COLOR_GRAY2RGB)
if self.annotation_dict is not None:
annotation_mask = np.zeros(shape=(tissue_mask.shape[0], tissue_mask.shape[1]))
scaling_factor = self.slide.level_downsamples[level]
scaled_list = [
[[point[0] / scaling_factor, point[1] / scaling_factor]
for point in self.annotation_dict[polygon]["coordinates"]]
for polygon in self.annotation_dict
]
for polygon in scaled_list:
cv2.fillPoly(annotation_mask, [np.array(polygon).astype(np.int32)], 1)
relevant_tiles_dict = {}
tile_nb = 0
# +1 to solve border issues
for row in range(rows):
for col in range(cols):
tile = tissue_mask[
row * tile_size: row * tile_size + tile_size, col * tile_size: col * tile_size + tile_size
]
tissue_coverage = np.count_nonzero(tile) / tile.size
annotated = False
if self.annotation_dict is not None:
if (np.count_nonzero(annotation_mask[row * tile_size: row * tile_size + tile_size,
col * tile_size: col * tile_size + tile_size, ]) > 0):
annotated = True
if (tissue_coverage >= min_coverage or
(self.config["keep_annotated_tiles_despite_too_little_tissue_coverage"] and annotated)):
relevant_tiles_dict.update(
{
tile_nb: {
"x": col * tile_size,
"y": row * tile_size,
"size": tile_size,
"level": level,
"annotated": annotated,
}
}
)
if self.config["use_tissue_detection"]:
if annotated:
colored = cv2.rectangle(
colored,
(col * tile_size, row * tile_size),
(col * tile_size + tile_size, row * tile_size + tile_size),
(0, 255, 0),
3,
)
else:
colored = cv2.rectangle(
colored,
(col * tile_size, row * tile_size),
(col * tile_size + tile_size, row * tile_size + tile_size),
(255, 0, 0),
1,
)
tile_nb += 1
if show and self.config["use_tissue_detection"]:
plt.imshow(colored)
plt.title("Tiled image")
plt.show()
return relevant_tiles_dict
@staticmethod
def tissue_percentage_over_threshold(label, label_dict, percentage):
if label_dict[label]["type"] == "==":
if label_dict[label]["threshold"] == percentage:
return label, percentage
elif label_dict[label]["type"] == ">=":
if percentage >= label_dict[label]["threshold"]:
return label, percentage
elif label_dict[label]["type"] == ">":
if percentage > label_dict[label]["threshold"]:
return label, percentage
elif label_dict[label]["type"] == "<=":
if percentage <= percentage[label]["threshold"]:
return label, percentage
elif label_dict[label]["type"] == "<":
if percentage < label_dict[label]["threshold"]:
return label, percentage
return None, None
@staticmethod
def check_tissue_percentage_over_threshold(label, label_dict, percentage):
if label_dict[label]["type"] == "==":
if label_dict[label]["threshold"] == percentage:
return True
elif label_dict[label]["type"] == ">=":
if percentage >= label_dict[label]["threshold"]:
return True
elif label_dict[label]["type"] == ">":
if percentage > label_dict[label]["threshold"]:
return True
elif label_dict[label]["type"] == "<=":
if percentage <= percentage[label]["threshold"]:
return True
elif label_dict[label]["type"] == "<":
if percentage < label_dict[label]["threshold"]:
return True
return False
@staticmethod
def get_unique_nonzero_entries(ndarray):
return np.unique(ndarray[np.nonzero(ndarray)]).astype(int)
def get_possible_labels(self, annotation_mask):
if self.get_unique_nonzero_entries(annotation_mask).size >= 1:
return self.get_unique_nonzero_entries(annotation_mask).tolist()
else:
return [0] # completely unlabeled patch -> only non-tumor
@staticmethod
def is_non_tumor(label_ids): # non-tumor tissue is unannotated tissue that's left after tissue detection
return label_ids[0] == 0
def calculate_label_percentages(self, label_ids, annotation_mask):
if self.is_non_tumor(label_ids):
label_percentages = [(np.count_nonzero(np.max(annotation_mask, axis=(-1)) == 0) /
annotation_mask[:, :, 0].size)]
else:
label_percentages = []
for label_id in label_ids:
label_percentages.append((np.count_nonzero(annotation_mask[:, :, label_id] == label_id) /
annotation_mask[:, :, label_id].size))
return label_percentages
def get_labels_with_enough_tissue_annotated(self, label_dict, annotation_mask):
label_ids = self.get_possible_labels(annotation_mask)
label_percentages = self.calculate_label_percentages(label_ids, annotation_mask)
labels_with_enough_tissue_including_non_tumor = []
for (label_id, label_percentage) in zip(label_ids, label_percentages):
label = list(label_dict)[label_id]
if self.check_tissue_percentage_over_threshold(label, label_dict, label_percentage):
labels_with_enough_tissue_including_non_tumor.append(label)
return labels_with_enough_tissue_including_non_tumor
def update_overlapping_annotations_file(self, slide_name, verbose):
with open(os.path.join(self.config["output_path"],
"overlapping_annotations_present_in_slides.json"), "r") as file:
overlapping_annotations_present = json.load(file)
if not overlapping_annotations_present[slide_name]:
overlapping_annotations_present[slide_name] = True
with (open(os.path.join(self.config["output_path"],
"overlapping_annotations_present_in_slides.json"), "w")
as file):
json.dump(overlapping_annotations_present, file, indent=4)
if verbose:
print(f"There are overlapping annotations in slide {slide_name}.")
@staticmethod
def normalize_to_tile_size_px(point, tile_size_px):
if point < 0:
return 0
elif point >= tile_size_px:
return tile_size_px - 1.0
else:
return point
def translate_world_coordinates_to_tile_coordinates(self, point, tile_x, tile_y, tile_size_px):
# the shrinkage of the coordinates to tile size is necessary as cv2.fillPoly only works if the annotation is
# completely within the tile, so I set any points larger than the tile coordinates to the closest (valid)
# tile coordinates
return [self.normalize_to_tile_size_px(point[0] - tile_x, tile_size_px),
self.normalize_to_tile_size_px(point[1] - tile_y, tile_size_px)]
def extract_calibrated_patches(
self,
tile_dict,
level,
annotations,
label_dict,
overlap=0,
annotation_overlap=0,
slide_name=None,
output_format="png",
):
scaling_factor = int(self.slide.level_downsamples[level])
patch_dict = {}
patch_nb = 0
for tile_key in tile_dict:
tile_x = tile_dict[tile_key]["x"] * scaling_factor
tile_y = tile_dict[tile_key]["y"] * scaling_factor
tile_size_px = tile_dict[tile_key]["size"] * scaling_factor
patch_size_px_x = int(np.round(self.config["calibration"]["patch_size_microns"] / self.res_x))
patch_size_px_y = int(np.round(self.config["calibration"]["patch_size_microns"] / self.res_y))
tile = np.array(self.slide.read_region((tile_x, tile_y), level=0, size=(tile_size_px, tile_size_px)))
tile = tile[:, :, 0:3]
if tile_dict[tile_key]["annotated"]:
px_overlap_x = int(patch_size_px_x * annotation_overlap)
px_overlap_y = int(patch_size_px_y * annotation_overlap)
else:
px_overlap_x = int(patch_size_px_x * overlap)
px_overlap_y = int(patch_size_px_y * overlap)
rows = int(np.ceil(tile_size_px / (patch_size_px_y - px_overlap_y)))
cols = int(np.ceil(tile_size_px / (patch_size_px_x - px_overlap_x)))
# create annotation mask
if annotations is not None:
# Translate from world coordinates to tile coordinates
tile_annotation_list = [
[self.translate_world_coordinates_to_tile_coordinates(point, tile_x, tile_y, tile_size_px)
for point in annotations[polygon]["coordinates"]] for polygon in annotations]
tile_annotation_list = list(zip(tile_annotation_list, [annotations[polygon]["tissue_type"]
for polygon in annotations]))
# Create mask from polygons
tile_annotation_mask = np.zeros(shape=(tile_size_px, tile_size_px, len(self.config["label_dict"])))
annotated_tissue_types = {}
tissue_type_number = 1
for tissue_type, tissue_details in label_dict.items():
if tissue_details["annotated"]:
annotated_tissue_types.update({tissue_type: tissue_type_number})
tissue_type_number += 1
for polygon in tile_annotation_list:
# note: the casting to a contiguous array is due to OpenCV requiring C-order (row major) for
# implementation purposes, compare the answer by vvolhejn here
# https://stackoverflow.com/questions/23830618/python-opencv-typeerror-layout-of-the-output-array-incompatible-with-cvmat
# basically: many (all?) copy operations in numpy do this, ascontiguousarray is one of the more
# verbose ones
tile_annotation_mask[:, :, annotated_tissue_types[polygon[1]]] = (
cv2.fillPoly(np.ascontiguousarray(
tile_annotation_mask[:, :, annotated_tissue_types[polygon[1]]]),
[np.array(polygon[0]).astype(np.int32)], annotated_tissue_types[polygon[1]]))
stop_y = False
for row in range(rows):
stop_x = False
for col in range(cols):
# Calculate patch coordinates
patch_x = int(col * (patch_size_px_x - px_overlap_x))
patch_y = int(row * (patch_size_px_y - px_overlap_y))
if patch_y + patch_size_px_y >= tile_size_px:
stop_y = True
patch_y = tile_size_px - patch_size_px_y
if patch_x + patch_size_px_x >= tile_size_px:
stop_x = True
patch_x = tile_size_px - patch_size_px_x
global_x = patch_x + tile_x
global_y = patch_y + tile_y
patch = tile[patch_y: patch_y + patch_size_px_y, patch_x: patch_x + patch_size_px_x, :]
if np.sum(patch) == 0:
break
# check if the patch is annotated
annotated = False
if annotations is not None:
patch_mask = tile_annotation_mask[patch_y: patch_y + patch_size_px_y,
patch_x: patch_x + patch_size_px_x, :]
labels = self.get_labels_with_enough_tissue_annotated(label_dict, patch_mask)
if labels is not None:
if len(labels) > 1:
self.update_overlapping_annotations_file(
slide_name, verbose=self.config["overlapping_annotations_verbose"])
for label in labels:
# this check is done to ensure that non-tumor tissue (unannotated) is handled properly
if self.config["label_dict"][label]["annotated"]:
annotated = True
else:
labels = "unlabeled"
if labels is not None:
if self.annotated_only and annotated or not self.annotated_only:
file_name = slide_name + "_" + str(global_x) + "_" + str(global_y) + "." + output_format
if self.config["calibration"]["resize"]:
patch = cv2.resize(patch, (self.config["patch_size"], self.config["patch_size"]))
patch = Image.fromarray(patch)
for label in labels:
patch.save(os.path.join(self.output_path, label, file_name), format=output_format)
patch_dict.update(
{
patch_nb: {
"slide_name": slide_name,
"patch_path": os.path.join(label, file_name),
"label": label,
"x_pos": global_x,
"y_pos": global_y,
"patch_size": patch_size_px_x,
"resized": self.config["calibration"]["resize"],
}
}
)
patch_nb += 1
if stop_x:
break
if stop_y:
break
return patch_dict
def make_dirs(self, output_path, slide_name, label_dict, annotated):
try:
slide_path = os.path.join(output_path, slide_name)
if not os.path.exists(slide_path):
os.makedirs(slide_path)
if not annotated:
unlabeled_path = os.path.join(slide_path, "unlabeled")
if not os.path.exists(unlabeled_path):
os.makedirs(unlabeled_path)
else:
for label in label_dict:
sub_path = os.path.join(slide_path, label)
if not os.path.exists(sub_path):
os.makedirs(sub_path)
for patch in os.listdir(sub_path):
os.remove(os.path.join(sub_path, patch))
self.output_path = slide_path
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "make_dirs")
def extract_patches(
self,
tile_dict,
level,
annotations,
label_dict,
overlap=0,
annotation_overlap=0,
patch_size=256,
slide_name=None,
output_format="png",
):
patch_dict = {}
scaling_factor = int(self.slide.level_downsamples[level])
patch_nb = 0
for tile_key in tile_dict:
# skip unannotated tiles in case only annotated patches should be saved
if self.annotated_only and not tile_dict[tile_key]["annotated"]:
pass
else:
# ToDo: rows and cols arent calculated correctly, instead a quick fix by using breaks was applied
tile_x = tile_dict[tile_key]["x"] * scaling_factor
tile_y = tile_dict[tile_key]["y"] * scaling_factor
tile_size = tile_dict[tile_key]["size"] * scaling_factor
tile = np.array(self.slide.read_region((tile_x, tile_y), level=0, size=(tile_size, tile_size)))
tile = tile[:, :, 0:3]
# overlap separately for annotated and unannotated patches
if tile_dict[tile_key]["annotated"]:
px_overlap = int(patch_size * annotation_overlap)
rows = int(np.ceil(tile_size / (patch_size - px_overlap)))
cols = int(np.ceil(tile_size / (patch_size - px_overlap)))
else:
px_overlap = int(patch_size * overlap)
rows = int(np.ceil(tile_size / (patch_size - px_overlap)))
cols = int(np.ceil(tile_size / (patch_size - px_overlap)))
# create annotation mask
if annotations is not None:
# Translate from world coordinates to tile coordinates
tile_annotation_list = [
[self.translate_world_coordinates_to_tile_coordinates(point, tile_x, tile_y, tile_size)
for point in annotations[polygon]["coordinates"]] for polygon in annotations]
tile_annotation_list = list(zip(tile_annotation_list, [annotations[polygon]["tissue_type"]
for polygon in annotations]))
# Create mask from polygons
tile_annotation_mask = np.zeros(shape=(tile_size, tile_size, len(self.config["label_dict"])))
annotated_tissue_types = {}
tissue_type_number = 1
for tissue_type, tissue_details in label_dict.items():
if tissue_details["annotated"]:
annotated_tissue_types.update({tissue_type: tissue_type_number})
tissue_type_number += 1
for polygon in tile_annotation_list:
# note: the casting to a contiguous array is due to OpenCV requiring C-order (row major) for
# implementation purposes, compare the answer by vvolhejn here
# https://stackoverflow.com/questions/23830618/python-opencv-typeerror-layout-of-the-output-array-incompatible-with-cvmat
# basically: many (all?) copy operations in numpy do this, ascontiguousarray is one of the more
# verbose ones
tile_annotation_mask[:, :, annotated_tissue_types[polygon[1]]] = (
cv2.fillPoly(np.ascontiguousarray(
tile_annotation_mask[:, :, annotated_tissue_types[polygon[1]]]),
[np.array(polygon[0]).astype(np.int32)], annotated_tissue_types[polygon[1]]))
stop_y = False
for row in range(rows):
stop_x = False
for col in range(cols):
# Calculate patch coordinates
patch_x = int(col * (patch_size - px_overlap))
patch_y = int(row * (patch_size - px_overlap))
if patch_y + patch_size >= tile_size:
stop_y = True
patch_y = tile_size - patch_size
if patch_x + patch_size >= tile_size:
stop_x = True
patch_x = tile_size - patch_size
global_x = patch_x + tile_x
global_y = patch_y + tile_y
patch = tile[patch_y: patch_y + patch_size, patch_x: patch_x + patch_size, :]
if np.sum(patch) == 0:
break
# check if the patch is annotated
annotated = False
if annotations is not None:
patch_mask = tile_annotation_mask[
patch_y: patch_y + patch_size, patch_x: patch_x + patch_size
]
labels = self.get_labels_with_enough_tissue_annotated(label_dict, patch_mask)
if labels is not None:
if len(labels) > 1:
self.update_overlapping_annotations_file(
slide_name, verbose=self.config["overlapping_annotations_verbose"])
for label in labels:
# this check is done to ensure that non-tumor tissue (unannotated) is handled
# properly
if self.config["label_dict"][label]["annotated"]:
annotated = True
else:
labels = "unlabeled"
if labels is not None:
if self.annotated_only and annotated or not self.annotated_only:
if slide_name is not None:
file_name = (
slide_name + "_" + str(global_x) + "_" + str(global_y) + "." + output_format
)
else:
file_name = (
str(patch_nb) + "_" + str(global_x) + "_" + str(global_y) + "." +
output_format
)
patch = Image.fromarray(patch)
for label in labels:
patch.save(os.path.join(self.output_path, label, file_name), format=output_format)
patch_dict.update(
{
patch_nb: {
"slide_name": slide_name,
"patch_path": os.path.join(label, file_name),
"label": label,
"x_pos": global_x,
"y_pos": global_y,
"patch_size": patch_size,
}
}
)
patch_nb += 1
if stop_x:
break
if stop_y:
break
return patch_dict
def export_dict(self, dictionary, metadata_format, filename):
if metadata_format == "json":
file = os.path.join(self.output_path, filename + ".json")
with open(file, "w") as json_file:
json.dump(dictionary, json_file, indent=4)
elif metadata_format == "csv":
df = pd.DataFrame(dictionary.values())
file = os.path.join(self.output_path, filename + ".csv")
df.to_csv(file, index=False)
else:
print("Could not write metadata. Metadata format has to be json or csv")
def save_thumbnail(self, mask, slide_name, level, output_format="png"):
remap_color = ((0, 0, 0), (255, 255, 255))
process_level = level
img = self.slide.read_region([0, 0], process_level, self.slide.level_dimensions[process_level])
# Remove Alpha
img = np.array(img)[:, :, 0:3]
if remap_color is not None:
indizes = np.all(img == remap_color[0], axis=2)
img[indizes] = remap_color[1]
copy_img = img[mask.astype(bool), :]
median_filtered_img = cv2.medianBlur(img, 11)
median_filtered_img[mask.astype(bool)] = copy_img
img = median_filtered_img
file_name = os.path.join(self.config["output_path"], slide_name, "thumbnail." + output_format)
plt.imsave(file_name, img, format=output_format)
def init_generic_tiff(self):
unit_dict = {"milimeter": 1000, "centimeter": 10000, "meter": 1000000}
self.scanner = "generic-tiff"
assert self.slide.properties["tiff.ResolutionUnit"] in unit_dict.keys(), (
"Unknown unit " + self.slide.properties["tiff.ResolutionUnit"]
)
factor = unit_dict[self.slide.properties["tiff.ResolutionUnit"]]
# convert to mpp
self.res_x = factor / float(self.slide.properties["tiff.XResolution"])
self.res_y = factor / float(self.slide.properties["tiff.YResolution"])
def init_aperio(self):
self.scanner = "aperio"
self.res_x = float(self.slide.properties["openslide.mpp-x"])
self.res_y = float(self.slide.properties["openslide.mpp-y"])
def init_mirax(self):
self.scanner = "mirax"
self.res_x = float(self.slide.properties["openslide.mpp-x"])
self.res_y = float(self.slide.properties["openslide.mpp-y"])
def init_unknown(self):
try:
self.scanner = self.slide.properties["openslide.vendor"]
self.res_x = float(self.slide.properties["openslide.mpp-x"])
self.res_y = float(self.slide.properties["openslide.mpp-y"])
except Exception as e:
print(e)
def init_patch_calibration(self):
# check scanner type
if self.slide.properties["openslide.vendor"] == "aperio":
self.init_aperio()
elif self.slide.properties["openslide.vendor"] == "generic-tiff":
self.init_generic_tiff()
elif self.slide.properties["openslide.vendor"] == "mirax":
self.init_mirax()
else:
self.init_unknown()
# future vendors
# elif ...
assert self.scanner, "Not integrated scanner type, aborting"
def process_slide(self, slide):
slide_name = os.path.basename(slide)
slide_name = os.path.splitext(slide_name)[0]
print("Processing", slide_name, "process id is", os.getpid())
try:
annotation_path = os.path.join(
self.config["annotation_dir"], slide_name + "." + self.config["annotation_file_format"]
)
if os.path.exists(annotation_path):
annotated = True
self.annotation_dict = self.load_annotation(annotation_path)
else:
annotated = False
self.annotation_dict = None
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "process_slide - load_annotations")
return 0
self.make_dirs(
output_path=self.config["output_path"],
slide_name=slide_name,
label_dict=self.config["label_dict"],
annotated=annotated,
)
slide_path = os.path.join(self.config["slides_dir"], slide)
try:
level = self.load_slide(slide_path)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "load_slide")
return 0
if self.config["calibration"]["use_non_pixel_lengths"]:
try:
self.init_patch_calibration()
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "init_patch_calibration")
return 0
if self.config["use_tissue_detection"]:
mask, level = self.apply_tissue_detection(level=level, show=self.config["show_mode"])
else:
mask = np.ones(shape=self.slide.level_dimensions[level]).transpose()
try:
tile_size = self.determine_tile_size(level)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "determine_tile_size")
return 0
try:
tile_dict = self.get_relevant_tiles(
mask,
tile_size=tile_size,
min_coverage=self.config["tissue_coverage"],
level=level,
show=self.config["show_mode"],
)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "get_relevant_tiles")
return 0
# Calibrated or non calibrated patch sizes
if self.config["calibration"]["use_non_pixel_lengths"]:
try:
patch_dict = self.extract_calibrated_patches(
tile_dict,
level,
self.annotation_dict,
self.config["label_dict"],
overlap=self.config["overlap"],
annotation_overlap=self.config["annotation_overlap"],
slide_name=slide_name,
output_format=self.config["output_format"]
)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "extract_calibrated_patches")
return 0
else:
try:
patch_dict = self.extract_patches(
tile_dict,
level,
self.annotation_dict,
self.config["label_dict"],
overlap=self.config["overlap"],
annotation_overlap=self.config["annotation_overlap"],
patch_size=self.config["patch_size"],
slide_name=slide_name,
output_format=self.config["output_format"],
)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "extract_patches")
return 0
self.export_dict(patch_dict, self.config["metadata_format"], "tile_information")
try:
self.save_thumbnail(mask, level=level, slide_name=slide_name,
output_format=self.config["output_format"])
print("Finished slide ", slide_name)
except Exception as e:
self.print_and_log_slide_error(slide_name, e, "save_thumbnail")
return 0
@staticmethod
def read_slide_file(slide_file_path, ext_list):
slide_list = []
with open(slide_file_path) as file:
lines = file.read().splitlines()
for line in lines:
if os.path.isdir(line):
for ext in ext_list:
for file in Path(line).resolve().glob("**/*" + ext):
slide = str(file)
else:
slide = line
slide_list.append(slide)
return slide_list
@staticmethod
def init(l):
global lock
lock = l
@staticmethod
def get_slide_name_from_slide_path(slide_path):
return os.path.splitext(os.path.basename(slide_path))[0]
def slides2patches(self):
l = multiprocessing.Lock()
extensions = [".tif", ".svs", ".mrxs"]
slide_list = []
if self.config["slides_file"] is not None:
print("Using slide file: " + self.config["slides_file"])
slide_list = self.read_slide_file(self.config["slides_file"], extensions)
else:
for extension in extensions:
for file in Path(self.config["slides_dir"]).resolve().glob("**/*" + extension):
slide_list.append(file)
self.annotation_list = []
if os.path.exists(self.config["annotation_dir"]):
annotation_list = os.listdir(self.config["annotation_dir"])
self.annotation_list = [os.path.splitext(annotation)[0] for annotation in annotation_list]
missing_annotations = []
annotated_slides = [
name
if os.path.splitext(os.path.basename(name))[0] in self.annotation_list
else missing_annotations.append(os.path.splitext(os.path.basename(name))[0])
for name in slide_list
]
annotated_slides = list(filter(lambda slide: True if slide is not None else False, annotated_slides))
print("###############################################")
print("Found", len(annotated_slides), "annotated slides")