forked from halfzm/v2vt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclone_voice.py
98 lines (86 loc) · 3.59 KB
/
clone_voice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import langid
import OpenVoice.se_extractor as se_extractor
from OpenVoice.api import BaseSpeakerTTS, ToneColorConverter
from microsoft_tts import MSTTS
from utils import timer_decorator
device = "cuda" if torch.cuda.is_available() else "cpu"
class VoiceClone():
def __init__(self):
self.en_ckpt_base = "openvoice_checkpoints/base_speakers/EN"
self.zh_ckpt_base = "openvoice_checkpoints/base_speakers/ZH"
self.ckpt_converter = "openvoice_checkpoints/converter"
# load models
self.en_base_speaker_tts = BaseSpeakerTTS(f"{self.en_ckpt_base}/config.json", device=device)
self.en_base_speaker_tts.load_ckpt(f"{self.en_ckpt_base}/checkpoint.pth")
# self.zh_base_speaker_tts = BaseSpeakerTTS(
# f"{self.zh_ckpt_base}/config.json", device=device
# )
# self.zh_base_speaker_tts.load_ckpt(f"{self.zh_ckpt_base}/checkpoint.pth")
self.tone_color_converter = ToneColorConverter(
f"{self.ckpt_converter}/config.json", device=device
)
self.tone_color_converter.load_ckpt(f"{self.ckpt_converter}/checkpoint.pth")
# load speaker embeddings
self.en_source_default_se = torch.load(
f"{self.en_ckpt_base}/en_default_se.pth"
).to(device)
self.en_source_style_se = torch.load(f"{self.en_ckpt_base}/en_style_se.pth").to(
device
)
self.zh_source_se = torch.load(f"{self.zh_ckpt_base}/zh_default_se.pth").to(
device
)
@timer_decorator
def clone_voice(
self,
prompt,
tgt_audio_fp,
style='default',
src_audio_fp= "./tmp/tts.wav",
out_audio_fp="./tmp/output.wav",
):
# first detect the input language
language_predicted = langid.classify(prompt)[0].strip()
# print(f"检测到的语种为:{language_predicted}")
if language_predicted == "zh":
tts_model = MSTTS()
# tts_model = self.zh_base_speaker_tts
source_se = self.zh_source_se
language = "Chinese"
else:
tts_model = self.en_base_speaker_tts
if style == "default":
source_se = self.en_source_default_se
else:
source_se = self.en_source_style_se
language = "English"
target_se, audio_name = se_extractor.get_se(
tgt_audio_fp,
self.tone_color_converter,
target_dir="processed",
vad=True,
)
# generate source speak voice
# tts_model.tts(prompt, src_audio_fp, speaker=style, language=language)
# 中文语音的话则调用微软的TTS
if language_predicted == 'zh':
tts_model.text_to_speech(prompt, src_audio_fp)
else:
tts_model.tts(prompt, src_audio_fp, speaker=style, language=language)
# Run the tone color converter
encode_message = "@二分之一的子木"
self.tone_color_converter.convert(
audio_src_path=src_audio_fp,
src_se=source_se,
tgt_se=target_se,
output_path=out_audio_fp,
message=encode_message,
)
if __name__ == '__main__':
cloner = VoiceClone()
# prompt = "He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce."
prompt = "今天的天气很冷,注意保暖!"
tgt_audio_fp = "./OpenVoice/resources/demo_speaker2.mp3"
style = "default"
cloner.clone_voice(prompt=prompt, tgt_audio_fp=tgt_audio_fp, style=style)