-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFig2.py
297 lines (289 loc) · 11.7 KB
/
Fig2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import math
import scipy.signal
from scipy.integrate import quad
import matplotlib.pyplot as plt
def CPM2PAM(alpha_seq,M,h,Lg,BT,K,sps):
if M == 2:
sig_len = len(alpha_seq)
sample_time = sps #每个符号的采样数
F_cal = sample_time
L = Lg
t = np.linspace(-Lg/2,Lg/2,Lg*sample_time+1) #为精确重构q,采用比原始采样率的5倍进行重构
len1 = len(t)
len2 = 2*len(t)-1
delta = math.sqrt(math.log(2))/(2*math.pi*BT)
sigma = delta
f = np.zeros(len1)
for k in range(len1):
kernal = lambda tau:1/(math.sqrt(2*math.pi)*sigma)*np.exp(-((t[k]-tau)**2)/(2*(sigma**2)))
info = quad(kernal,-1/2,1/2)
f[k] = 1/2*info[0]
q = np.zeros(len1)
for i in range(len1-1):
q[i+1] = q[i] + 1/(F_cal)*f[i+1]
u = np.zeros(len2)
for i in range(len2):
if i < len1:
u[i] = math.sin(2*h*math.pi*q[i])/math.sin(h*math.pi)
else:
u[i] = u[len2-i-1]
beta = np.zeros([K,L])
for k in range(K):
bin_str = bin(k).replace('0b','')
for i in range(L-1):
if i < len(bin_str):
beta[k][i+1] = int(bin_str[len(bin_str)-i-1])
D = np.zeros(K,dtype = int)
for k in range(K):
D[k] = 2*L
for i in range(L):
D[k] = int(min(D[k],L*(2-beta[k][i])-i))
ct = [[] for k in range(K)]
for k in range(K):
for n in range(D[k]*sample_time):
temp_product = 1
for i in range(L):
index = int(n+i*sample_time+beta[k][i]*L*sample_time)
if index>=len2:
temp_product = 0
break
temp_product *= u[index]
ct[k].append(temp_product)
return ct
def Channel(st,N0,sps):
send_len = len(st)
w = np.zeros(send_len,dtype=complex)
sigma = math.sqrt(N0*sps)
for k in range(send_len):
w[k] = complex(np.random.normal(0,sigma),np.random.normal(0,sigma))
theta = np.random.uniform(0,2*math.pi)
rt = st*complex(math.cos(theta),math.sin(theta))+w
#rt = st+w
return rt
def CPM(alpha_seq,BT,h,Lg,sps):
sig_len = len(alpha_seq)
sample_time = sps #每个符号的采样数
F_cal = sample_time
L = Lg
t = np.linspace(-Lg/2,Lg/2,Lg*sample_time+1) #为精确重构q,采用比原始采样率的5倍进行重构
len1 = len(t)
delta = math.sqrt(math.log(2))/(2*math.pi*BT)
sigma = delta
f = np.zeros(len1)
for k in range(len1):
kernal = lambda tau:1/(math.sqrt(2*math.pi)*sigma)*np.exp(-((t[k]-tau)**2)/(2*(sigma**2)))
info = quad(kernal,-1/2,1/2)
f[k] = 1/2*info[0]
q = np.zeros(len1)
for i in range(len1-1):
q[i+1] = q[i] + 1/(F_cal)*f[i+1]
send_len = int((sig_len + Lg)*F_cal)
st = np.zeros(send_len,dtype=complex)
ksai = np.zeros(send_len)
for n in range(sig_len):
start = int(n*F_cal)
ksai[start:start+len1] += 2*h*math.pi*alpha_seq[n]*q
ksai[start+len1:] += h*math.pi*alpha_seq[n]
for n in range(send_len):
st[n] = math.sqrt(2)*complex(math.cos(ksai[n]),math.sin(ksai[n]))
return st
def NonCoherentReceiver(rt,ct,sps,sig_len,L,N,S):
#WMF部分
sample_len = int(sps*sig_len)
h_match = ct[::-1]
xt = 1/sps*np.convolve(h_match,rt)
x = np.zeros(sig_len,dtype = complex)
for n in range(sig_len):
x[n] = xt[n*sps+sps-1]
if sps!=1:
g = np.zeros(5)
g[2] = 1/sps*np.dot(ct,ct)
g[1] = 1/sps*np.dot(ct[0:2*sps],ct[sps:3*sps])
g[0] = 1/sps*np.dot(ct[0:sps],ct[2*sps:3*sps])
g[3] = g[1]
g[4] = g[0]
poles = np.roots(g)
amp = np.sum(g)/((1-poles[2])*(1-poles[3])*(1-poles[2])*(1-poles[3]))
a = np.sqrt(amp)*np.convolve([1,-poles[2]],[1,-poles[3]])
F = a[::-1]
b = np.array([1])
else:
a = np.array([ct[1],ct[2]])
b = np.array([1])
F = np.array(ct)
output = scipy.signal.lfilter(b,a,x)
z = output
K_1 = np.log2(S) #表示在状态数为S的情况下维特比的深度
path = np.zeros([S,sig_len],dtype=int) #记录维特比算法在每个时刻的转移
total_cost = np.zeros(S)
temp_cost = np.zeros(S)
alpha_seq = np.zeros([S,N+L],dtype = complex)
temp_alpha = np.zeros([S,2,N+L],dtype = complex)
lamda = np.zeros([S,2]) #记录在每个时刻每个状态的累积距离,每个时刻更新,初始设置总代价为inf
y_seq0 = np.zeros(N,dtype = complex)
y_seq1 = np.zeros(N,dtype = complex)
decode_seq0 = np.zeros(sig_len)
imag_unit = complex(0,1)
##网格动态规划部分
for n in range(sig_len):
if n < K_1: #启动过程
if n == 0:
temp_alpha[0,0,0] = -1*imag_unit
temp_alpha[0,1,0] = imag_unit
y_seq0[0] = F[0]*temp_alpha[0,0,0]
y_seq1[0] = F[0]*temp_alpha[0,1,0]
lamda[0,0] = abs(z[0]*y_seq0[0].conjugate())-0.5*(abs(y_seq0[0])**2)
lamda[0,1] = abs(z[0]*y_seq1[0].conjugate())-0.5*(abs(y_seq1[0])**2)
total_cost[0] = lamda[0,0]
total_cost[1] = lamda[0,1]
path[0,0] = 0
path[1,0] = 0
alpha_seq[0,...] = temp_alpha[0,0,...]
alpha_seq[1,...] = temp_alpha[0,1,...]
decode_seq0[n] = (total_cost[0] < total_cost[1])-(total_cost[0] >= total_cost[1])
else:
for s in range(2**(n)):
temp_alpha[s,0,0] = -1*imag_unit*alpha_seq[s][0]
temp_alpha[s,0,1:N+L] = alpha_seq[s][0:N+L-1]
temp_alpha[s,1,0] = imag_unit*alpha_seq[s][0]
temp_alpha[s,1,1:N+L] = alpha_seq[s][0:N+L-1]
for i in range(N):
temp0 = complex(0,0)
temp1 = complex(0,0)
for l in range(L+1):
temp0 += F[l]*temp_alpha[s,0,i+l]
temp1 += F[l]*temp_alpha[s,1,i+l]
y_seq0[i] = temp0
y_seq1[i] = temp1
part_sum0 = complex(0,0)
part_sum1 = complex(0,0)
for i in range(min(N-1,n-1)):
part_sum0 += z[n-i-1]*y_seq0[i+1].conjugate()
part_sum1 += z[n-i-1]*y_seq1[i+1].conjugate()
lamda[s,0] = abs((part_sum0+z[n]*y_seq0[0].conjugate()))-abs(part_sum0)-0.5*(abs(y_seq0[0])**2)
lamda[s,1] = abs((part_sum1+z[n]*y_seq1[0].conjugate()))-abs(part_sum1)-0.5*(abs(y_seq1[0])**2)
for s in range(2**(n+1)):
state0 = s//2
cost0 = total_cost[state0]+lamda[state0,s%2]
temp_cost[s] = cost0
path[s,n] = state0
alpha_seq[s,...] = temp_alpha[state0,s%2,...]
total_cost = temp_cost.copy()
decode_seq0[n] = (total_cost[0] < total_cost[1])-(total_cost[0] >= total_cost[1])
else: #稳定过程
for s in range(S):
temp_alpha[s,0,0] = -1*imag_unit*alpha_seq[s][0]
temp_alpha[s,0,1:N+L] = alpha_seq[s][0:N+L-1]
temp_alpha[s,1,0] = imag_unit*alpha_seq[s][0]
temp_alpha[s,1,1:N+L] = alpha_seq[s][0:N+L-1]
for i in range(N):
temp0 = complex(0,0)
temp1 = complex(0,0)
for l in range(L+1):
temp0 += F[l]*temp_alpha[s,0,i+l]
temp1 += F[l]*temp_alpha[s,1,i+l]
y_seq0[i] = temp0
y_seq1[i] = temp1
part_sum0 = complex(0,0)
part_sum1 = complex(0,0)
for i in range(min(N-1,n-1)):
part_sum0 += z[n-i-1]*(y_seq0[i+1].conjugate())
part_sum1 += z[n-i-1]*(y_seq1[i+1].conjugate())
lamda[s,0] = abs((part_sum0+z[n]*(y_seq0[0].conjugate())))-abs(part_sum0)-0.5*(abs(y_seq0[0])**2)
lamda[s,1] = abs((part_sum1+z[n]*(y_seq1[0].conjugate())))-abs(part_sum1)-0.5*(abs(y_seq1[0])**2)
for s in range(S):
state0 = int(s//2) #表示首位为0的上一个状态
state1 = int(s//2+S/2) #表示首位为1的上一个状态
cost0 = total_cost[state0]+lamda[state0,s%2]
cost1 = total_cost[state1]+lamda[state1,s%2]
if cost0 > cost1:
temp_cost[s] = cost0
path[s,n] = state0
alpha_seq[s,...] = temp_alpha[state0,s%2,...]
else:
temp_cost[s] = cost1
path[s,n] = state1
alpha_seq[s,...] = temp_alpha[state1,s%2,...]
total_cost = temp_cost.copy()
decode_seq0[n] = (total_cost[0] < total_cost[1])-(total_cost[0] >= total_cost[1])
#回溯部分
max_id = np.argmax(total_cost)
cursor = max_id
decode_seq = np.zeros(sig_len)
for n in range(sig_len):
decode_seq[sig_len-1-n] = 2*(cursor%2)-1
cursor = path[cursor,sig_len-1-n]
return decode_seq
def CodeMapping(digit):
codemap = {}
num = np.zeros(digit)
for state_num in range(2**digit):
bin_str = bin(state_num).replace('0b','')
for k in range(digit):
if k < len(bin_str):
num[k] = 2*int(bin_str[k])-1
else:
num[k] = -1
codemap[state_num] = num
return codemap
def RunSim():
N = [2,3,4,5,5,5]
S = [2,4,4,4,8,32]
sample_num = [15,13,13,12,12,12]
BER = [[[] for n in range(sample_num[k])]for k in range(6)]
N0_seq = [[] for k in range(6)]
sim_time = 1
sps = 10
BT = 0.25
h = 0.5
L = 2
M = 2
K = 1
sig_len = 100000
ct = CPM2PAM(np.array([1,1]),M,h,L,BT,K,sps)
for k in range(6):
N0_seq[k] = [10**(-n/10) for n in range(sample_num[k])]
for m in range(len(N0_seq[k])):
temp_BER = 0.0
for n in range(sim_time):
alpha = SigGenerate(sig_len)
st = CPM(alpha,BT,h,L,sps)
rt = Channel(st,N0_seq[k][m],sps)
decode_seq = NonCoherentReceiver(rt,ct[0],sps,sig_len,L,N[k],S[k])
temp_BER += CalBER(alpha,decode_seq)
BER[k][m] = temp_BER/sim_time
file = open('Fig2BER.txt','w')
for fp in BER:
file.write(str(fp))
file.write('\n')
file.close()
return
def SigGenerate(sig_len):
alpha = np.zeros(sig_len)
for n in range(sig_len):
alpha[n] = 2*np.random.randint(0,2)-1
return alpha
def CalBER(send,receive):
sig_len = len(send)
error_idx = np.nonzero(receive-send)
BER = len(error_idx[0])/sig_len
return BER
if __name__ == '__main__':
sig_len = 1000
sps = 10
alpha = np.zeros(sig_len)
for n in range(sig_len):
alpha[n] = 2*(np.random.randint(0,2))-1
#alpha[n] = -1
st = CPM(alpha,0.25,0.5,2,sps)
ct = CPM2PAM(alpha,2,0.5,2,0.25,2,sps)
n0 = 10**(-1)
#n0 = 0
rt = Channel(st,n0,sps)
decode_seq = NonCoherentReceiver(rt,ct[0],sps,sig_len,2,2,2)
diff = decode_seq-alpha
#print(diff)
error_idx = np.nonzero(diff)
print(len(error_idx[0]))
#RunSim()